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Neural Network Simulator Architecture 

43067589a Tokyo KONPYUTA AKITEKUCHA SHINPOJIUMU RONBUNSHU in Japanese 
17-18 May 88 pp 27-35 

[Article by Nobuki Kajiwara, Toshiyuki Nakada, Satoru Matsushita, and 
Tomohiko Koike of NEC Corp.:  "Neural Network Simulation Machine--NeuMan"] 

[Text] In recent years, neural networks (NNs) have been actively studied 
as models for fine-grain high-level parallel computations. Various models 
and learning algorithms have been proposed and research for the development 
of neural network hardware has been conducted. 

In this paper, a special simulation machine capable of simulating large- 
scale neural networks at high speed will be discussed. The special 
simulation machine pipelines the simulation algorithm to be used, divides 
the target neural network into partial networks, and processes the partial 
networks in parallel using special processor elements (PEs). 

1.  Introduction 

We have proposed an information- and time-continuous neural network model 
based on the idea that a neural network is a fine-grain parallel computation 
model, and have been engaged in the experimental generation of a neural 
network description language, a compiler and simulators and in experiments 
on small-scale information processing functions (a simple control system, 
a forward inference system, time-series pattern recognition, N_Queen, etc.) 
of a neural network. In testing the neural network, we stored the neural 
network program as the weight of the links and tested neural network 
functions by simulation. For the simulations, we used simulators 
implemented by software on conventional types of computers (LISP machine, 
VAX, PC9801). The software-based simulation performed on the LISP machine 
recorded a processing speed of 90 to 400 links per second. (The simulator 
to be used on the LISP machine has been created without much importance 
attached to the processing speed. It will be possible to raise its 
processing speed by about one order of magnitude.) With another 
experimental simulator created for use on the VAX8650, to which importance 
has been attached to the processing speed, a processing speed of about 
140 K links/s has been achieved. However, even this processing speed will 
be inadequate for conducting larger-scale experiments or developing 
practical applications. The inadequate processing speed is attributable to 



the simulation of parallel computations by consecutive sequence computers. 
Subsequently, we came to think it necessary to develop a special simulation 
machine capable of utilizing the parallelism characteristic of neural 
networks and began to study a special neural network simulation machine-- 
NeuMan. The NeuMan enables high-speed simulation of a large-scale neural 
network by pipelining the simulation algorithm, dividing the neural network 
into partial networks and processing the partial networks in parallel using 
more than one processor element. 

2. Basic Design 

Two approaches can be taken for the development of a special machine for 
neural network simulation. In one, analog circuits are used for neural 
network simulation. In the other, digital circuits are used, as is done in 
the conventional computers. In an analog circuit used to simulate a neural 
network, the nodes of the neural network are represented by transistors and 
operational amplifiers, while the links are represented by resistors. A 
neural network simulation machine with an analog simulation circuit 
comprising the elements, as mentioned above, can operate at higher speeds 
than can a comparable machine comprising a digital circuit. 

However, the analog-circuit machine requires the target neural network to 
be programmed when the analog circuit is formed. Once the neural network 
is programmed for the machine, it is difficult to modify the program using 
current techniques. This method is not yet realistic for the simulation of 
a large-scale neural network. A neural network simulation machine with a 
digital simulation circuit is slower than a comparable machine with an 
analog simulation circuit, but it permits program modification and the 
simulation of a large-scale neural network. If it is designed to be 
operated under a microprogram, it allows the neural network model to be 
modified or to be used for learning simply by rewriting the microprogram. 
We have selected the digital circuit type for its flexibility and capability 
for large-scale neural network simulation use. 

A neural network can be represented by a matrix. Supercomputers and array 
processors can perform matrix operations at high speeds, so neural network 
simulators made from those high-speed processors have been proposed. In an 
analog circuit-type neural network simulator, a neural network is 
represented by a resistor matrix. The simulation method in which the neural 
network is represented by a matrix is efficient when the nodes of the neural 
network are almost perfectly interlinked. However, the storage capacity and 
hardware quantity required for neural network simulation by this method 
increases in proportion to the square of the number of nodes. Therefore, 
with this method, the simulation of a neural network with several thousand 
or several tens of thousands of nodes is unrealistic. 

Generally, each node of a neural network is not linked with all the other 
nodes of the neural network. The brain of a human is said to comprise 
several tens of billions of neurons. The number of synapses held by each 
neuron is said to range from several thousand to several tens of thousands. 
This is much smaller than the total number of neurons contained in the 
brain.   We previously created a small-scale forward inference system 



comprised of a neural network. In the neural network, each node had an 
average of five synapses. When a practical information processing system 
comprising a neural network is created, the system is divided into function 
modules (partial networks). In the neural network, although many links 
exist between nodes within each function module, the number of links between 
the function modules is not as large. If this type of neural network is 
represented by a matrix, the matrix becomes sparse, with most of its 
elements comprising zeroes. Therefore, using a supercomputer, array 
processor or an analog-circuit machine to simulate the neural network will 
be inefficient, causing many useless computations to be performed and 
involving the use of a large quantity of memory and other hardware 
resources. 

Our neural network simulator divides the neural network to be simulated into 
partial neural networks and extracts their parallelism characteristic by 
processing them in parallel, using more than one processor. Instead of 
producing a matrix that would represent all the links in the neural network, 
a link table (fan-out table)is prepared for each node. It contains 
information on the links stemming from the node. 

Accelerated processing is achieved by pipelining the simulation algorithms, 
thereby extracting their parallelism characteristic, and also by dividing 
the neural network into partial networks and processing the partial networks 
using more than one processor element, thereby extracting their parallelism 
characteristic. 

3. Neural Network Model 

Figure 1 illustrates the image of the neural network system proposed here. 
The "environment" shown in the figure represents where the neural network 
operates. Generally, it is a dynamic system whose condition changes with 
time. The neural network consists of the weighted links between each node 
and many others. 
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Figure 1.  Neural Network System 

It is necessary that the neural network operate while recognizing the 
dynamically changing environment.  To meet this need, each node has an 



internal status, referred to as the activity degree. This internal status 
changes with time while being affected by the environment and other nodes. 
The pattern of the activity degrees of the nodes contained in the neural 
network may be said to represent the current status of the neural network. 
The neural network is a dynamic system that determines its actions and 
changes its status according to the current status (the activity degree of 
each node) and the information obtained from the environment. 

The nodes comprise three kinds: sensor, context, and motor nodes. The 
sensor nodes change their activity degrees according to environmental 
conditions, while the motor nodes work on the environment according to the 
activity degrees. The context nodes come between the sensor and motor 
nodes, realizing the system functions of short-period memorization and 
information processing. 

None of such network structure types as the symmetrical structure or layered 
structure is assumed for this neural network. An arbitrary structure, which 
may be formed through the feedbacking of information to itself, may be 
assumed. For purposes of theoretical analysis or study, it is more 
convenient to assume a specific network structure. However, from the 
viewpoint of information processing capacity, it is more advantageous to not 
assume any specific network structure. 

Vxx 

Figure 2. Neural Network Model 

We propose the following time- and information-continuous model as a neural 
network model for recognizing a dynamically changing pattern.1 Figure 2 
shows the neural network model that permits information feedback to itself. 
The activity degree of node x shown in Figure 2 changes when affected by the 
activity degrees of other nodes, y1( y2, •••, yn, and itself. Wyxx represents 
the weight of the link between node yx and node x. Wxx represents the weight 
of the link extending from node x to node x itself. When x, y1( y2, •", and 
yn represent the activity degrees of the corresponding nodes, x changes 
according to the following differential equation: 

rdx/dt = SWyxx • n  (yx) + Wxx • n  (x) - (1) 

where SWyjX • fi  (yx) - influence of other nodes 
Wxx • n  (x) = influence of node x itself 

x - attenuation term. 
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Figure 3. Output Function /* 

Equation (1) is called an operation equation. Wyxx • fi (yx) is called the 
vote from node yx to node x. r is a time constant. The smaller the value 
of r, the larger the change in activity degree. the output function \L is 
a monotonic increase function, in a wide sense, with a limiter 
characteristic as shown by equation (2) and Figure 3. 
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(2) 

In approaches to neural network simulation dependent on digital circuits, 
including cases where simulation is performed by software running on a 
general-purpose computer, the operation equation (1) can be solved by 
Euler's method in succession. The time At can be integrated by the 
following recurrence formula: 

accx: - SWyxx • fi  (yx) + Wxx • \i  (x) 
Ax: - At [accx-x]/r 
x: - x + Ax 

(3) 

The operation of the neural network can be defined by a system of operation 
equations (1) defined for the individual nodes. Therefore, executing 
equation (3) for every node contained in the neural network results in 
simulating the entire neural network for At. This process is referred to 
as a simulation step. In the simulation step, the following three 
operations must be performed for every node of the neural network. 

(Vote phase) 

The value (vote value) obtained by multiplying the result of applying the 
output function to the activity degree of a node by the link weight is 
conveyed to other nodes. 

(Accumulation phase) 

The vote values received from other nodes are accumulated. 



(Update phase) 

The activity degree of the node is updated according to the results of vote 
value accumulation. 

Generally, neural network models, including the one proposed here, have the 
following attributes: 

(1) Composed of many nodes (small calculation elements) and links (with 
weight) connecting the nodes. 

(2) Each node changes its internal status according to the accumulation of 
numeric messages received from other nodes. 

(3) Each node calculates its output value by applying an output function 
to its internal status. The output value is multiplied by the link weight, 
and the product is output as a numeric message to other nodes. 

Neural networks with the above attributes can be simulated in the same 
manner as that proposed by us. Our simulator is aimed at simulating, at 
high speed, the neural network model described in this section. If its 
microprogram is modified, it can also be used to simulate other models. 
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Figure 4.  Simulation Data Control Format 

4. Acceleration Measures and System Structure 

The way in which the parallelism characteristic of the target neural network 
is extracted affects the performance of the simulator. To obtain a higher 
simulator speed, we have directed our attention toward the parallelism 
characteristic of the neural network and that of the simulation algorithm. 



The nodes in a neural network can operate in parallel. Assigning a physical 
processor to each of the nodes will best enhance their parallelism 
characteristic. However, it is unrealistic, from both technology and cost 
standpoints, to assign to each node a hardware device capable of digitally 
performing the three types of operations for node simulation. We have 
adopted an approach by which the target network is divided into partial 
neural networks and more than one processor element (PE) is assigned to 
them. In this arrangement, although the nodes are processed successively 
within each processor element, the partial networks assigned to different 
processor elements are processed in parallel. This method of parallel 
processing has been put to practical use as a circuit division technique for 
logic simulation in the CAD field. 

Of the three operations to be performed in one simulation step, the vote and 
accumulation phases can be executed in parallel. Each processor element has 
two processing units. They are used exclusively to process, in parallel, 
the above-mentioned two phases in the pipelining mode in order to extract 
the parallelism characteristic of the simulation algorithm. 
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Figure 5.  NeuMan System Configuration 

The system structure of the NeuMan is shown in Figure 5, and a block diagram 
of the processor element is shown in Figure 6. The NeuMan consists of 
special-purpose processor elements (PEs) and an inter-PE communication 
network used for message transfers between processor elements. The neural 
network is divided into partial networks, and the partial networks are 
assigned to different processor elements. Each processor element to which 
a partial network has been assigned executes the vote, accumulation, and 
update phases for the nodes contained in the partial network in synchronism 
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Figure 6.  Processor Element (PE) 

with other processor elements. If a node worked on by a processor element 
is linked with another node being worked on by another processor element, 
the former outputs a vote message to the inter-PE communications network. 
The vote message comprises the vote value of the node being worked on by the 
former processor element and the address of the node being worked on by the 
latter processor element. The inter-PE communications network transfers the 
message to the processor element corresponding to the node address included 
in the message, the processor element given the vote message locates the 
addressee node and adds the vote value to the accumulated vote value for the 
addressee node. This is who the vote and accumulation phases are executed. 
Each processor element has two processing units able to execute the above 
two phases in parallel in the pipelining mode. After executing the vote and 
accumulation phases, each processor element executes the update phase 
independently of other processor elements. 

The inter-PE communications network is a multistage link network comprising 
router cells (2-x-2 switches). An inter-PE communications network to which 
as many as n processor elements are to be connected requires router cells 
equal in number to (n/2) multiplied by log2n. 

The NeuMan serves as a back-end processor for the host computer. The host 
computer loads data for use in simulating a neural network into the 
processor elements via the inter-PE communications network. The host 
computer also controls the simulation, monitors the activity degree of each 
node during the simulation, and provides an interface between processor 
elements and the environment. Since each processor element has an I/O port, 
it can also be directly interfaced to the environment without requiring the 
service of the host computer. 
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5.  Parallel Algorithm 

In this section, the simulation of a neural network using a simulator 
structured as described in Section 4 will be explained. 

Each processor element stores information on the partial network assigned 
to it in the activity (x) table, accumulator (x) table and fan-out table (a 
table listing the address of node y influenced by node x and the weight Wxy 
of the link between node x and node y), as shown in Figure 4. 

Each processor element carries out simulation according to the above data 
structure to maintain synchronism with other processor elements. Step-based 
synchronism between processor elements can be achieved by inputting a 
special message (SYNC) for processor element synchronization to the inter- 
PE communications network without requiring any major synchronization 
operation to be performed. 

The contents of processing performed by each processor element during each 
of the three phases are as follows: 

(Vote phase) 

FOR x IN All nodes assigned to PEi DO 
mx: - M (Activity[x]); 
FOR link IN All fan-out links of node x DO 
MSGout.addr :- link.address; 
MSGout.vote :- link.weight X mx; 
put(MSGout); 

put(SYNC); 

(Accumulation phase) 

MSGin := get(); 
WHILE MSGin / SYNC DO 

Accumulator[MSGin.addr] := 
Accumulator{MSGin.addr] + MSGin.vote; 

MSGin := get(); 

(Update phase) 

FOR x IN All nodes assigned to PEi DO 
Activity[x] :- Activity[x] + 

Atx {Accumulator[x] - Activity[x]}/T; 
Accumulator[x] :- 0.0; 

(Description of symbols used above) 

PEi: Processor element i 
Activity: Activity degree of node 
Accumulator[x]: Accumulator of node 
MSG.addr: Address part of message 



MSG.vote: Vote part of message 
link.address: Node address of link 
link.weight: Weight of link 
SYNC: Synchronization message 
get(): Message input 
put(MSG): Message output 
At: Unit of integration 

In the vote phase, each processor element performs voting according to the 
activity table and the fan-out table for each node assigned to it. The 
output of a node is calculated by applying the output function \i to the 
activity degree of the node. The calculated output is multiplied by the 
weight of the link. The product (vote value) is combined with the address 
of the node receiving the vote, and they are output as a vote message to 
the inter-PE network. When the processor element completes the voting 
procedures for all the nodes assigned to it, it outputs a synchronization 
message SYNC to the inter-PE network. 

In the accumulation phase, the processor element accumulates the values 
specified in the vote sections of the vote messages received via the inter- 
PE communications network in the vote accumulators for the corresponding 
nodes specified in the address sections of the vote messages received. This 
accumulation operation is continued until the processor element receives a 
SYNC signal. 

Upon termination of the vote and accumulation phases, the processor element 
begins to execute the update phase. During the update phase, it updates the 
activity degrees of all the nodes assigned to it while referring to the 
activity table and the accumulator table. 

6. Processor Elements 

A block diagram of the processor element is shown in Figure 6. Each 
processor element has two processing units, i.e., master and slave 
processing units, used to execute the vote phase and the accumulation phase 
in parallel. Both the master and the slave processing units are controlled 
by microprograms. Therefore, if the microcodes used in the microprograms 
are changed properly, the processor element can be used to simulate 
different neural network models or to conduct different kinds of research. 
The master processing unit consists of a 32-bit floating-point processor, 
an integer processor and a sequencer. It can access all resources in the 
processor element. It is even possible to carry out simulation using only 
this master processing unit. The slave processing unit is used to execute 
the accumulation phase in parallel with the execution of the vote phase 
carried out by the master processing unit. It consists of a 32-bit 
floating-point processor and a simple controller. Executing the vote phase 
and the accumulation phase--the two phases occupying a substantial portion 
of the neural network simulation process--in parallel, using the master and 
slave processing units in the pipelining mode, results in faster simulation. 
After the vote phase and the accumulation phase are completed, the update 
phase is executed by the master processing unit. 
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The activity degree of each node and the corresponding accumulated vote 
value, obtained by adding up the vote values received from other nodes, are 
entered in the node's activity table and accumulator table, respectively, 
as 32-bit floating-point values. Information on the links between nodes is 
entered in the fan-out table. The information comprises node addresses 
(each node address consists of an 8-bit processor element identification 
number and a 16-bit intraprocessor element address) and link weights (32- 
bit floating-point values). Each processing unit can independently access 
the activity table and the fan-out table during the vote phase and the 
accumulator table during the accumulation phase. During the update phase, 
both the accumulator table and the activity table must be referred to. 
During this phase, the master processing unit can access the two tables 
while the slave processing unit is inactive. 

Each processor element has an I/O port connected to the inter-PE network and 
uses it to exchange vote messages with other processor elements. The two 
processing units incorporated in each processor element are connected by a 
vote message bypass. The bypass is used to transfer vote messages on nodes 
within the same processor element. The use of the bypass results in 
reducing the traffic through the inter-PE network. 

The activity table and the fan-out table have a combined capacity of 4 M 
bytes; the accumulator table has a capacity of 256 K bytes. They enable the 
corresponding processor element to simulate a neural network comprising up 
to 64 K nodes and 440 K links. Each processor element can achieve a 
processing speed of about 1 M links/s using its two processing units to 
carry out parallel and pipeline processing. 

Each of the master and slave processing units uses a 32-bit floating-point 
operation unit that operates based on a 10-MHz (100 ns) clock. The 
operation unit can perform multiplication and addition against one 
instruction and is capable of pipeline processing at 100-ns intervals. The 
memory used is a DRAM with an access time of 100 ns and a cycle time of 
220 ns. Each processor element is capable of simulating a neural network 
comprising up to 64 K nodes and 440 K links. When a processor element 
simulates a neural network of the maximum size mentioned above, it takes the 
following numbers of clocks to execute the three phases comprising one 
simulation step: 

• Vote phase: 3,648 K clocks 
• Accumulation phase:  1,920 K clocks 
• Update phase: 384 K clocks 

Since the vote phase and the accumulation phase are executed concurrently, 
the total number of clocks required to execute one simulation step becomes: 

max[vote phase, accumulation phase] + update phase = 4,032 K clocks 

Since one clock equals 100 ns and 1 K equals 1,024, the time required to 
execute one simulation step is 413 ms. Therefore, the processing speed is 
1 M (440 K/413 m) links/s. 

11 



7.  Inter-PE Communications Network 

During neural network simulation, such operations as data transfer, 
simulation control by the host computer, processor element synchronization 
and loading neural network data into processor elements are performed on a 
message basis using the inter-PE communications network. 

The message format is shown in Figure 7. The messages have a variable word 
length (a word consists of 16 bits).  Each message consists of a header 
(1 word) and main parts (0-127 words).  The header indicates the message 
type, the message receiver address and the message length. 

Header 
Main 
part 1 

Main 
part 2 • to 

Main 
part n 

(n = 8-127) 

Figure 7.  Message Format 

During a neural network simulation, vote values are transferred between 
nodes using vote messages. The vote message format is shown in Figure 8. 
A vote message must contain the information identifying the node that is to 
receive the message and a vote value. The information identifying a node 
in a neural network must contain the address of the processor element to 
which the node has been assigned and the address in the processor element 
of the node. 

1st word 2d word 3d word 

Header 
Node 
address 

(1 6) 

Vote value 

PE 
address 

(7) 

Message 
length 

(7) 

Charac- 
teristic 

(8) 

Mantissa 
part 

(8) 

Figure 8. Vote Message Format 

In a vote message, the header contains the processor element address. Since 
a processor element takes care of up to 64 K nodes, the section used for 
node address indication in a vote message comprises 16 bits. The vote value 
is represented by a real number complying with the floating point format set 
by IEEE. The IEEE format consists of a total of 32 bits, i.e., an 8-bit 
characteristic and a 24-bit mantissa part. In neural network simulation, 
the value precision is not very important. A neural network simulation 
experimentally conducted by running a simulator on a LISP machine whose 
mantissa for the vote messages had been reduced to 8 bits did not produce 
any change in results. Therefore, of the 24-bit mantissa included in the 
vote value section of each vote message, only the 8 high-order bits are 
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used, even though the processor element performs on a 32-bit basis. The 
vote value section of the vote message consists of 16 bits, i.e., 8 bits 
each for an exponent and a mantissa. With the mantissa reduced from 24 to 
8 bits, the vote message section has been expanded to 3 words, resulting in 
higher'message transfer speed. It is also possible to use 32-bit precision 
vote messages to carry out simulation with higher precision. 

The inter-PE communications network is a multistage link network comprised 
of router cells. A router cell block diagram is shown in Figure 9. Each 
router cell is a switch with two input ports, A and B, and two output ports, 
X and Y. It contains four message buffers. Each port is 16 bits wide. The 
messages received are entered in the buffers selected according to the 
specified addresses. The buffer selection is controlled at the output ports 
of the router cell during the preceding stage. A message coming through 
input port A to be sent to output port Y, for example, is entered in the 

buffer AY. 

Each output port is provided with a multiplexer. The messages coming 
through port A or B are advanced to an output port. 

When a message exits an output port, it is input to an input buffer of the 
next-stage router cell. During this process, the input buffer selection is 

made by the output port. 

P o.r t A 

I RAXl 

_v 

P o.r t B 

c 

^C^ 
M u x X 

-"IT- 
Port X 

IRBY 

JL 
M u x Y 

P o r t Y 

Figure 9. Router Cell 

The router cell shown in Figure 9 can continue operation unless the two 
buffers inputting messages to the two multiplexers are both empty. (Here, 
it is assumed that the input buffers, to which the output ports of this 
router cell are connected, of the next-stage router cell have not 
overflowed.  This assumption is proper as explained later.) 

To enable a processor element to operate at a rate of 1 M links/s in 
simulating a neural network, the router cells must handle three-word vote 
messages to be exchanged between nodes at a rate of 2 M links/s. In other 
words, each router cell must receive messages, on the average, every 
microsecond, and output the messages received to the two output ports at the 
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same message density. The router cells are designed to be capable of 
operating continuously without causing any buffer to overflow unless the 
message density exceeds 1.5 messages//*s at each input port. 

In the following, the message processing capacity of the router cell will 
be analyzed. Assume that the messages received through each input port 
constitute Poisson-type arrivals at an average rate of A messages/s), and 
that each multiplexer performs an exponent-type service at an average rate 
of fM (messages/s). Although, in reality, the processing time of a 
multiplexer is almost constant (l//i), its service is assumed to be of an 
exponent type here to avoid making the analysis too complicated. Analysis 
based on this assumption produces more exact results than does that based 
on the assumption that the multiplexer service is constant. Therefore, 
adopting the above assumption regarding the multiplexer service guarantees 
being on the safe side when conducting analysis. 

When a message is input through an input port, it is entered on one of the 
two buffers according to the destination address specified. Therefore, the 
messages arriving at a buffer constitute Poisson A/2 (messages/s). Since 
each multiplexer handles the messages output from two buffers, the message 
processing capacity of a router cell can be analyzed through analyzing the 
system shown in Figure 10. 

JL. 

T 

Poisson-type 
arrival 

( A ) 

Exponent-type 
service 

(H) 

Figure 10.  Poisson-Type Arrival/Exponent-Type Service System 

The system shown in Figure 10 is a typical queue system. The system 
analysis results will be explained. When it is assumed that the traffic 
density p = X/fi, the probability of the number of messages being n in the 
system in a steady state is expressed as follows: 

Pn (1 - P)  Pn 

If the number of messages exceeds n while the buffer length is n, not all 
the messages can be entered in the buffer. The probability p1>n of the 
buffer length exceeding n can be calculated as follows: 

Pl>n  -  Pn  +  Pn+1  +   •    •    • 

- (l - p) p <n+1> EV 
1-0 
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If 
sp1» i/a-P) 

1=0 

is substituted into the above equation, the following result is obtained: 

Pl>n - /n+1) 

At the design stage, it is specified that A - 1 M (messages/s) and that 
p  - 1/0.6 M (messages/s).  From this p   - 0.6 and n - 512/3 (a buffer 
consists of 512 words of 16 bits each and a simulation message comprises 
3 words) - 170. The probability of the input buffer overflowing becomes: 

Pi>i70 - P171 " 0.6171 - 1.9 x 10-38 

Probability of this magnitude is negligible. 

If A is 1.5 M (messages/s) and p  is 0.9, the probability becomes: 

Pi>i7o " Pin  = 0.9171 - 1.5 x 10-8 

Probability of this magnitude is also negligible. 

Therefore, the router cell can perform message switching without causing 
either buffer to overflow, even if it receives messages through both input 
ports at a rate of 1.5 M (messages/s) each. 

The processor elements are synchronized during every step by the use of 
messages. The synchronization is achieved in the following way without 
involving any special large-scale processing. 

At the end of the vote phase of a simulation step, each processor element 
outputs a synchronization message SYNC to the network, signaling to the 
router cell that it has no more messages to be sent out in the current step 

The SYNC message reaching the input port of the router cell is input to the 
two input buffers connected to the input port. The messages subsequently 
arriving at the input port should be vote messages issued during the 
following step. When a multiplexer receives a SYNC message from one of the 
two input buffers, it knows that no messages to be transferred during the 
current simulation step are left in the input buffer, and continues 
processing the messages coming from the other input buffer. When it 
subsequently receives a SYNC message from the other input buffer, it outputs 
a SYNC message from its output port to let the next-stage processor element 
know that no messages remain for transferral during the current simulation 
step. 

When a processor element receives a SYNC message from the inter-PE network, 
it knows that no more messages will be forwarded to it during the current 
simulation step, and it terminates the accumulation phase. After 
terminating the vote phase and the accumulation phase, it executes the 
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update phase. Upon completion of the update phase, it terminates the 
current simulation step and then starts the next simulation step. 

8.  Conclusion 

We have proposed a special simulation machine capable of simulating a large- 
scale neural network at high speed. It is designed to perform parallel 
processing using more than one processor element and utilizing the 
parallelism characteristic of the neural network simulation algorithm, as 
well as that of the neural network. 

We intend to fabricate a simulator system incorporating four to eight 
processor elements and to test it to verify the propriety of the 
architecture. We also plan to develop a neural network programming 
environment tightly coupled with the NeuMan on the host computer. The 
neural network programming environment must contain a neural network 
description language, a compiler, a neural network split loader, and a 
monitor. Among them, the neural network description language, that must be 
highly descriptive, and the neural network split loader assume particular 
importance. 

To enable the NeuMan to simulate a neural network with high efficiency, it 
is necessary to split the neural network into partial networks, minimizing 
the number of messages to be exchanged between processor elements. When the 
neural network program is written in the neural network description 
language, it is divided into function modules. The information used for 
modularizing the program can be utilized in dividing the neural network. 
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[Text]  Abstract 

Data totaling N in number can be sorted in time, T - 0(log2N), AT2 = 
0(N log5N), VT3/2 - 0(N log4N), through the realization of bitonic sorting in 
an optically-connected three-dimensional VLSI architecture. This 
performance is superior to the theoretical limit value, Q (N2log N) , of the 
area-time complexity (AT2) determined by Thompson for sorting in a two- 
dimensional VLSI architecture. 

The superior sorting performance indicated above is attributable to the 
utilization of the freedom offered by the new dimension introduced in the 
three-dimensional architecture. 

It has become clear that the adoption of the three-dimensional VLSI 
architecture may result in the realization of VLSI performance far superior, 
with regard to some important problems, to that of two-dimensional VLSIs. 
This potential of the three-dimensional VLSI architecture appears to suggest 
that the efforts made to develop three-dimensional VLSIs will be adequately 
rewarded. 

1.  Introduction 

The greatness of the potential of the three-dimensional VLSI is being 
increasingly recognized. This status is described well in the commentary 
(KUR086) by Kurokawa, et al. A three-dimensional architecture allows more 
flexible problem mapping than does a two-dimensional one. In this 
connection, it has been known (HASE86) that the computational complexity of 
FFT [fast Fourier transform] can be greatly reduced by adopting a properly 
arranged three-dimensional system architecture. In this paper, the 
computational complexity involved in sorting on a three-dimensional VLSI 
will be studied, and it will be explained that a fine sorting performance 
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can be achieved using a three-dimensional VLSI architecture. The 
introduction of VLSIs capable of sorting a large quantity of data at high 
speeds is strongly desired. In the present situation involving the two- 
dimensional VLSIs, however, it is difficult to realize a satisfactory 
sorting performance using a realistic portion of the chip surface. 

The introduction of VLSIs has made it possible to form digital systems on 
chips, leading to substantial improvements in the operating speed of 
semiconductor devices. However, inside the VLSI chips, the operating speed 
is restrained due to the drive delay caused when long-distance wiring used 
for wide-area communications are charged and discharged. In fact, a 
significant portion of the VLSI chip surface is used for wiring (MUR082). 

Such being the case, a competitive race toward the development of an 
algorithm that would enable the above problem to be solved on a local 
communications basis is under way. With regard to some problems, remarkable 
achievement has already been made. However, as research in this area 
progresses, it has come to be recognized that problems that can be solved 
on a local communication basis are the exception and, moreover, that many 
problems that exist whose efficient solutions appear to be fundamentally 
dependent on wide-area communications. Furthermore, it has been found that 
many important operations for which acceleration is urgently required 
present problems such as those stated above. Among these operations, FFT 
and sorting are typical. 

To cope with the situation, it is necessary to devise a measure to improve 
the efficiency of wide-area communications. A three-dimensional VLSI 
architecture is a prime candidate for adoption as a means of realizing the 
desired efficiency improvement. 

In the following part of this article, it will be explained that data 
totaling N in number can be sorted in time, T - 0(log2N), AT2 - 0(N log5N) , 
and VT3/2 - 0(N log4N) , through the realization of bitonic sorting in an 
optically connected three-dimensional VLSI architecture. These results are 
better than the theoretical limit value, Q (N2log N), of the area-time 
complexity (AT2) determined by Thompson for a two-dimensional VLSI system. 

It also signifies that, when based on the performance of a single processor, 
the system performance may be enhanced by more than N times when using N 
times as many resources. This possibility is due to the additional 
dimension introduced as a result of the adoption of a three-dimensional 
architecture. The freedom in the new dimension can be advantageously 
utilized (needless to say, this does not refer to the superlinearity within 
the same system) . As far as we know, the FFT (HASE86) and sorting (HASE86B) 
operations performed on three-dimensional VLSI systems are the first 
examples in which the above-stated possibility has been materialized. 

2.  Bitonic Sorting 

The sorting algorithm adopted for the present system is bitonic sorting. 
This sorting method was originally devised by Batcher (BATC68). However, 
the present discussion will be advanced based on the bitonic sorting studies 
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made by Stone (ST0N71) and Knuth (KNUT73). In this article, a bitonic 
sequence refers to a composite sequence formed by joining two sequences of 
the same length--one of ascending order and the other of descending order. 
When a sequence {a1( a2 a^, a„ a2n) is a bitonic sequence 
satisfying the relationship of ax < a2 < ... < a„, a„+1 > a,^ > ... > a2n, the 
two sequences generated by applying the operations MINi - min(aif a^) and 
MAXi - max^^a^) to the sequence realize the following relationships: 

(I) The   new   sequences   generated,   {MIN1(MIN2 MINn}   and 
{MAXi.MAXjj, . . . .MAXJ , are both bitonic. 

(II) Any element of the sequence {MAX^MAXj, MAXJ is greater than any 
element of the sequence {MIN1(MIN2, . . . ,MINn}. 

Therefore, the original bitonic sequence can be sorted by recursively 
applying the above operations, 0(log N) times, to the partial bitonic 
sequence equal to one-half of the original bitonic sequence. With regard 
to the unit of operation in this case, it is enough if, for the target 
bitonic sequence with a length of m, compare - exchange operations can be 
performed between the sequence elements arranged m/2 apart (Figure 1). 

Figure 1.  Bitonic Sorting Procedure 

Figure 2 shows the flow of signals in bitonic sorting performed for eight 
inputs. The squares in Figure 2 represent compare-exchange units. The two 
inputs shown on the left-hand side of each compare-exchange unit are output 
to the two output terminals on the right-hand side of the unit after being 
rearranged in the direction of the arrow shown in the square according to 
a comparison of their values performed in the compare-exchange unit. 

Figure 2.  Signal Flow in Bitonic Sorting 

3.  System Structure 

First, efficient sorting is dependent on wide-area communications. As long 
as it'is based on a two-dimensional VLSI architecture, it is subjected to 
the drive delay resulting from the use of long-distance wiring. 

Now, a system structure that can realize a sorter for N inputs will be 
discussed based on the signal flow shown in Figure 2. The system comprises 
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the processing stages for executing compare-exchange operations. The 
processing stages total 0(log N) in number and are sequentially arranged. 
They are optically connected through identical path-length networks 
(Figure 3). Each processing stage is equivalent in function to a processing 
row shown in Figure 2. It includes independent compare-exchange elements, 
totaling N in number, that operate in parallel. The inputs are given from 
the left-hand side, as viewed based on Figure 3, and the final output is 
obtained on the right-hand side. 

(a) Conceptual 
structure 

1st STAGE 2nd STAGE 3rd STAGE 4th STAGE Eth STAGE 

(b) Pattern of stage connections in   identical-path-length network 

Figure 3.  Sorting System Structure on Three-Dimensional 
VLSI Architecture 

Identical-path-length network 

The processing stage connection network adopted for this system is an 
identical-path-length network (HASE86b). In the identical-path-length 
network, the path length between any two points connected during the same 
processing stage is constant. In this network, optical signals are used as 
communication media in the connection stage. The path connecting any two 
nodes is not blocked by any other path connecting other nodes. Therefore, 
in this network, such optical elements as optical waveguides, free space, 
and transparent flat plates may be used arbitrarily. 

Since the signals propagated along different paths in this network are free 
from interference, two or more data streams can exist in parallel in the 
same network if it is physically feasible to produce the data streams. In 
addition, in this network, it is permitted to transmit one bit of data along 
a path as soon as the transmission of the preceding bit of data is completed 
on the same path. Therefore, two or more bits of data may exist 
concurrently, arranged in the order of transmission, along the same path. 
Each node in each processing stage can compare, exchange and transmit, i.e. , 
it compares the two signals received from two nodes of the preceding 
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processing stage via the connection stage, orders them according to the 
comparison results and transmits them to the corresponding nodes of the next 
stage. Each processing stage contains compare-exchange nodes totaling N in 
number. All the nodes operate in parallel. 

Processing Stage Structure 

Each compare-exchange element included in each processing stage is composed 
of a photo detector layer, a compare-exchange layer, and a light emitter 
layer (Figure 4). In the light emitter layer, the optical signals received 
from the preceding stage are converted into electric signals and are sent 
to the compare-exchange layer. The results of the signal comparison 
conducted in the compare-exchange layer are converted into optical signals 
in the light emitter layer and are output to the next stage. Each 
processing stage constitutes an array comprised of compare - exchange elements 
totaling N in number and is capable of parallel operation. Physically, this 
array can be formed as a three-dimensional VLSI consisting of three layers, 
i.e. , a photo detector layer, a processing layer, and a light emitter layer. 
We have decided to study the structure in which each operation stage has an 
array of compare-exchange elements like the one described above and 
connection stages are stacked alternately. 

Q/H-ARRAY W"*?!!LT1C Q/R-ARRAY 
LAYER    LATE*     LAYER 

Figure 4. Processing Stage Structure 

4. Evaluation Criteria 

In this section, the volume performance advocated by Rosenberg (ROSE83) will 
be discussed, in addition to the time computation complexity and the area- 
time performance. The volume performance is a concept expressing the cost 
of the operation performed, using a uniform material, according to the 
amount of the material used. It can be said of the evaluation criteria in 
general use today that more discussion will be required to determine a 
definition of the time performance in order to express the processing 
capacity of a system and the criteria for assessing the problems related to 
the new type of three-dimensional architecture, which is somewhat different 
from the conventional three-dimensional IC architecture. 
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As a yardstick of the difficulty encountered in realizing an algorithm, the 
area evaluation appears more appropriate than the volume performance. As 
an index of the final product cost, the volume evaluation--a material cost 
indicator--will be effective when an adequate yield can be secured (HIBI86). 

It will be explained later that the three-dimensional VLSI architecture has 
proven superior to the two-dimensional VLSI architecture, no matter which 
evaluation criterion in use today is used in comparing the two. 

5.  Hypotheses for Optically Connected VLSI Models 

The hypotheses set for conducting the time and area performance evaluation 
of optically connected VLSI models will be explained. 

Hypothesis 01: Data transfer rate (optical connection system) 

The transfer of 1 bit of data along an optical propagation path 
requires a unit length of time. 

The above hypothesis holds if an adequate length of data is to be bit- 
serially transferred using a pipelined drive circuit for the electrooptic 
converter. 

Hypothesis 02:  Drive delay in optical connection 

The attenuation along the optical propagation paths running where 
circuit elements are optically connected is adequately low and the 
distance-dependent drive delay is negligible. 

This hypothesis can be true when low-loss optical waveguides or free space 
can be used as optical communications channels. 

If the rate of attenuation along the optical propagation paths is not 
adequately low, then it is necessary to take into account the drive delay 
0(L) for propagation distance L (HASE87). 

Hypothesis 03:  Propagation delay in optical connection 

The propagation delay to the limitation of the light velocity is 
negligible. 

In wire-connected VLSI models, the time required for information transfer 
itself (propagation delay) has been regarded as negligible (it may be more 
appropriate to say that the propagation delay has not even been taken into 
consideration). Since this analysis is aimed at comparing different 
systems, the propagation delay is also regarded as negligible for optically- 
connected three-dimensional VLSIs. 
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6.  Results Obtained for Wire-Connected Two-Dimensional VLSIs 

For the purpose of comparison with the optically-connected three-dimensional 
VLSI architecture, the computational complexity, determined by Thompson, of 
sorting in a wire-connected two-dimensional VLSI architecture will be shown 
first. Then, the extent to which it is affected by the current density 
limitations pointed out by Card will be discussed briefly. 

6.1 Results Obtained by Thompson 

(Theoretical lower limit value of area-time complexity (AT2)) 

Thompson previously reported (THOM80) that, with regard to the (area*time2) 
performance in the sorting of data totaling N in number, ft (N2log2N) was the 
best solution available. According to his latest research results (THOM83), 
the theoretical lower limit value is ft (N2log N). 

(Sorting in shuffle-connected system) 

Bitonic sorting in a shuffle-connected system can be realized at 
T - 0(log3N), A - 0(n2/log2N), AT2 - 0(N2log*N) .  (THOM83) 

(Sorting in mesh-connected system) 

Sorting in a mesh-connected system can be realized at T - 0(N  ), 
A = 0(N log2N), AT2 - 0(N2log2N).  (THOM83) 

6.2 Card's Theorem (CARD86) and Its Effect 

The theoretical lower limit value determined by Thompson is based on Mead's 
report (Mead82) (Mead80) that the delay time involved in driving a wiring 
with length L could be reduced to 0(log L) using an exponent-type driver. 
However, Card pointed out (Card86) that, since the current density along the 
wiring on contemporary VLSIs is already close to the threshold value causing 
electromigration, the adoptability of an exponent-type driver designed to 
enable as large a current as desired to flow through the wiring was 
problematical. When this is taken into consideration the drive delay in a 
wiring with length L should be as follows: 

(Theorem 1) In an arbitrary VLSI layout, the delay caused in charging 
and discharging with length L is 0(L).  (CARD86) 

The ways in which two representative methods of sorting on VLSIs will be 
affected by the restrictive condition given by the above theorem will be 
discussed next. 

(Sorting in mesh-connected system at limit current density) 

Bitonic sorting can be performed at 0(log3N) when the current density limit 
does not need to be considered in performing the compare-exchange steps. 
Between compare-exchange steps, a 0(N1/2) step is required in performing the 
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data transfer in preparation for the next operation. The overall delay time 
involved in sorting is 0(N1/2). 

However, when it is necessary to consider the current density limit, a 
problem arises in connection with the driving of wiring between processors. 
Since the wiring length is 0(log N), the routing time per stage should be 
estimated at 0(log N). The area-time complexity under these conditions is 
as follows: 

Sorting in mesh-connected system at limit current density: 

A - 0(N log2N), T - 0(N1/2log N) , AT - 0(N2log*N). 

(Sorting in shuffle-connected system at limit current density) 

In a shuffle exchange connected system, the maximum wiring length between 
operation stages is 0(N/log N). Therefore, the routing delay in the 
connection network is 0(N log N). Therefore, the complexity becomes: 

Sorting in shuffle-connected system at limit current density: 

A - 0(N2log2N), T - 0(N log N) , AT2 - 0(N*). 

When the current density limit must be taken into consideration, sorting in 
a mesh-connected system can be executed at higher speed than can that in a 
shuffle-connected system. 

7.  Performance Evaluation 

(Pipeline-type bit-serial compare-exchange unit) 

A bit-serial compare-exchange unit capable of pipeline operation for the 
execution of bitonic sorting in the three-dimensional system discussed here 
can be realized as follows: number of gates - 0(1), area A - 0(1) and delay 
T = 0(1). This unit constitutes a module with bit-serial input terminals 
corresponding to two input streams, a and b, and two output terminals 
corresponding to the two outputs--max(a.b) and min(a,b). The data formats 
of the input and output data streams are represented by serial bit strings. 
The heading bit of each of the serial bit strings is called the most 
significant bit (MSB). The comparison, exchange, and transmission 
operations to be performed to execute bitonic sorting will be discussed 
next. The data words must be input bit-serially, with the highest-order bit 
leading the way. Each compare - exchange unit must be capable of comparing 
two input values and changing their output direction according to the 
results of the comparison within the unit length of time per bit. During 
the time between when the input of data from two input data streams to a 
compare-exchange unit is started and when the first unmatched pair of bits 
is received by the compare-exchange unit, the compare-exchange unit copies 
the bits input from both streams and outputs the copied bits. When the 
first unmatched pair of bits is received, the compare - exchange unit compares 
them to determine which bit is larger, and changes the output direction 
according to the results of the comparison.  Once it changes their output 
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direction, the compare-exchange unit does not change the output direction 
again until the data words are finished. Until the data output direction 
is changed for the pair of input streams, the values output from the 
compare-exchange unit are always identical for the two output terminals 
(even though the data output from the two output terminals are from 
different sources). Therefore, as far as the data values are concerned, the 
compare-exchange unit can perform the data comparison and exchange in the 

manner described above. 

If the above-described operation is performed during every operation cycle 
for every bit of data, the minimum cycle time is the time required to 
compare two bits of data and to change their output direction. When this 
method is used, it is possible to generate 1 bit of output data every unit 

of time. 
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Figure 5.  Pipelining Using Bit-Serial Compare-Exchange Units 

If the possibility exists that the routing time will vary with the route in 
the connection network, it is necessary to enter each pair of bit streams 
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received from the preceding stage into buffers and then to input them to the 
corresponding compare-exchange unit, in order, beginning with the leading 
bits, while maintaining synchronism between the two input data streams. The 
necessity of providing for absorbing the skew in this case limits the 
sorting performance. 

Unlike the above system, the sorting system we have devised incorporates an 
identical-path-length routing network so that no problems develop from the 
signal skew between input data streams. In this system, the two input data 
streams may be regarded as being kept in perfect synchronism. In this 
sense, the identical-path-length routing network assumes fundamental 
importance to this sorting system. 

Routing Time Requirement 

From the foregoing hypotheses, the time required for routing in an 
identical-path-length network can be established at 0(1). In bit-serial 
data transfer, as hypothesized, a data word comprising 0(log N) bits takes 
time 0(log N) to pass through the network. However, since the propagation 
delay in the network is 0(1), and both the compare-exchange units and the 
routing network participate in pipeline operation in the present sorting 
system, the time required for routing does not exceed the time taken by the 
lead signal in moving from the input end to the output end of the network, 
i.e. 0(1). 

From the above, in each processing stage, one operation unit can be executed 
using bit-serial compare-exchange units totaling N in number (area: 0(1)) 
and taking time 0(1). The time taken to transfer the data input to the 
connection network to the next stage is 0(1) if the light velocity is high 
enough to make the propagation delay negligible. When this process is 
repeated for stages totaling 0(log2N), the total area requirement is 
0(N log2N) , the total time requirement is 0(log2N) and the output period is 
0(log N). When the present sorting system is evaluated by Thompson's 
criteria (THOM83), the time computational complexity is Td - 0(log

5N) and the 
area computational complexity is Ad - 0(N log N). The area-time 
computational complexity is ATd

2 - 0(N log5N). This value suggests the 
possibility for great performance improvement, in light of the fact that the 
area-time computational complexity determined by Thompson for two- 
dimensional VLSIs is ATd

2 - ß (N2log N) . 

Many differences of opinion may be expressed when determining what 
quantities should be used when comparing two-dimensional and three- 
dimensional VLSIs. Rosenberg (ROSE83) has determined that the evaluation 
quantity for three-dimensional VLSIs, corresponding to AT2 for two- 
dimensional VLSIs, is VT3/2. If this theory is followed, VTd

3/2 = 
0 (N log*N). Not that, since the present sorting system can handle instances 
totaling 0 (log N) simultaneously, the volume per instance, 
Vd - 0(N log N), has been applied here. 

Bitonic sorting in a mesh-connected network is a nearly ideal sorting method 
that can be used without occupying an unrealistically large area on a two- 
dimensional VLSI.  Its area performance is A - 0(N log2N) , time performance 
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is Td - 0(N2) and area-time performance is ATd
2 - 0(N2log2N). The superiority 

of the present sorting method is obvious from these figures, too. 

A summary of the above discussion appears in Table 1. The time performance 
of sorting on wire-connected two-dimensional VLSIs has been evaluated based 
on the assumption that the drive delay for a path length L is T - 0(L). 
Recent study results, however, indicate with increasing clarity (CARD86) 
that it is extremely difficult to make the cost of practical wide-area 
communications (drive delay) smaller than T - 0(L). As a result, it has 
become necessary to review the area-time evaluation so far referred to of 
sorting on a two-dimensional VLSI. This point is only partly reflected in 
Table 1. When this point is taken fully into account, the advantages of 
sorting on a three-dimensional VLSI over those of sorting on a two- 
dimensional VLSI will be better recognized. 

Table 1.  Area-Time Performance of Various Sorting Methods 
Area effi-    Time effi- 

Sortinp method ciencv (Ad)   ciencv (T^)— Ala2. Source 

Bitonic sorting on 
optically-connected 
three-dimensional VLSI 
(Volume evaluation)   Vd: N log N 
(Area evaluation)        N log N 

Theoretical lower limit 
(for two-dimensional 
VLSI) 

<When current density 
is limited> 
N-proc.bitonic.Mesh N log2N 
N-proc.bitonic.S-E N2/log2N 

<When current density 
need not be considered> 
N-proc.bitonic.Mesh 
N-proc.bitonic.S-E 
Single processor 

N log2N 
N2/log2N 

log N 

log2N 
log2N 

N1/2log N 
N log N 

N 

Ni/2 

log3N 
log2N 

VT3/2: N logAN 
N log5N 

fl (N2log N) (TH0M81) 

Nzlog"N 
N* 

N2log2N (THOM83) 
N2logAN (THOM83) 
N2log5N (THOM83) 

8.  Discussion of Realization of Proposed Sorting Scheme 

Bitonic sorting in a three-dimensional VLSI architecture has been discussed 
without giving much consideration to its feasibility. In this section, how 
the sorting will be realized is discussed by taking into consideration the 
device techniques that are likely to become available in the near future 
(HASE86b). From the viewpoint of design elegance, a device structure in 
which compare-exchange processing stages and connection stages are 
alternately stacked in the order in which they are passed by signals seems 
attractive. Materialization of this device structure requires a technique 
that would enable the formation of a three-dimensional VLSI consisting of 
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numerous active element layers. When two or more element layers are put 
together to form an integrated device, layers stacked later are likely to 
exhibit sharply higher defect ratios. With the device techniques presently 
available, it is extremely difficult to overcome this problem. Even if 
three-dimensional VLSIs, as described above, can be fabricated, they may 
pose problems with regard to heat radiation and production yields. 
Fortunately, the optical connection stage is required only as a medium, so 
it does not need to be an integral part of the three-dimensional VLSI from 
the beginning. This point constitutes a fundamental difference between the 
optically connected VLSI and the wire-connected VLSI. It is possible to 
fabricate processing stages with a compare-exchange function and an optical 
input-output function, with optical connection stages to be used separately 
as a communications medium, then test them and put together only those that 
have passed the performance test. Separate preparation of different parts 
with different functions will result in higher production yields and, 
eventually, in a much lower defect ratio during the final assembly stage. 
Chips may be compared in terms of the total active-region area. In a well- 
known method of rough evaluation, if chips, each with an area of A, have 
defects totaling, on the average, N per unit area, the probability P0 at 
which defectless chips are found among them is given as 

P0(NA) - e -NA 

i.e., when the area exceeds a certain value, the yield starts dropping 
sharply. The system being discussed here will, when materialized, 
constitute a large-scale device with a marginal (if assessed based on the 
present technology level) integration density. Therefore, the above- 
described approach in which the processing stage and optical connection 
stage are prepared separately will produce an effect that cannot be ignored. 

IDENTICAL PATH LENQTH 
ROUTING NETWORK 

HEAT-SINK COMPARE EXCHANGE CELL 

IDENTICAL PATH LENGTH 
'•ROUTING NETWORK 

Figure 6.  Possible System Structure 

Any actual attempt to fabricate this system will encounter many more 
problems. Since the system includes many elements that generate a large 
amount of heat, devising an efficient heat radiation measure may become a 
major hurdle to be cleared. A possible solution to the problem is to slice 
the active layer of each processing stage of the system perpendicularly to 
the direction of the signal flow and sandwich a heat sink, made of a 
beryllia-based ceramic and with high heat conductivity, between the slices. 
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It will be possible to develop a technique to materialize this structure by 
modifying the existing multichip carrier mounting technique. An 
electrooptical converter element may be attached to each end of each slice 
carrying compare-exchange cells, thereby making up a basic component unit 
of the processing stage. The processing stage may comprise a desired number 
of slices. 

9. Conclusion 

Three-dimensional VLSIs should not merely be substitutes for two-dimensional 
VLSIs for use when the integration density can no longer be raised for the 
two-dimensional VLSIs. The introduction of three-dimensional VLSIs can lead 
the way to a totally new area. Even though the general computation capacity 
of three-dimensional VLSIs has not been evaluated, it has become 
increasingly clear that three-dimensional VLSIs may far exceed the two- 
dimensional ones with respect to some important aspects of their operation. 
This seems to suggest that the efforts devoted to the development of three- 
dimensional VLSIs will be adequately rewarded. 
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Tabular List Representation Oriented Machine 

43067589c Tokyo KONPYUTA AKITEKUCHA SHINPOJIUMU RONBUNSHU in Japanese 
17-18 May 88 pp 89-97 

[Article by Ryoichi Wada, Yutaka Aoki, and Masato Honma, Information System 
Laboratory, Matsushita Electric Industrial Co., Ltd.: "Architecture of 
Symbol Processing Machine ATOM Designed for High-Speed List Pattern 
Matching"] 

[Text] In representing a list, the ATOM (a tabular list representation 
oriented machine) uses a set of leaf data distributed in a tree structure 
whose end nodes indicate the absolute-location node addresses on the tree, 
the ATOM processes the leaf data using more than one processor in parallel, 
making itself capable of handling lists at high speed, in particular, in 
relational operations. The results of simulations carried out using sample 
programs have indicated that the ATOM may be able to execute production 
systems more than 10 times as fast as the conventional machines. This paper 
deals with the new method of internal list representation, how to process 
the list representation, the structure of the ATOM, and the results of 
simulations. 

1.  Introduction 

It is characteristic of the programs used in the field of artificial 
intelligence to employ a list structure for data, with many of the control 
structures adopted being of the data drive type. 

The use of a data drive-type control structure signifies that a lot of 
pattern matching is carried out during program execution. In fact, it is 
well known that pattern matching constitutes a major cause of bottlenecking 
during program execution in this field.1 

An explanation of the bottlenecking is as follows: List data is stored in 
memory in the form of list cells. When lists are compared, all the elements 
of the corresponding end nodes must be accessed. To perform this process, 
it is necessary to trace the lists progressively. These procedures cause 
bottlenecking in memory access. 

A processing system designed to make the above-mentioned list tracing easier 
has been developed. It furthers CDR coding and completely converts the 
lists to be processed into sequences.2 One of its drawbacks is that, when 
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processing lists for other purposes than matching, the lists must be 
converted into an ordinary type. 

When the data to be processed consists of more than one element that must 
be processed in the same manner as list comparison, the processing time can 
be shortened through parallel processing. However, if, as in the case of 
list cell representation, the relationships among the elements making up the 
data are indicated on a relative location basis, it is necessary to access 
the elements sequentially. In this case, parallel processing is 
impractical. 

The symbol processing machine ATOM is designed to be capable of processing 
lists at high speed. It uses a tree structure whose end nodes include 
elements indicating the node addresses, i.e., the absolute addresses in the 
tree structure. It represents lists using sets of leaf data of the tree 
structure. It has a structure of the SIMD-type, adopted with attention 
given to the leaf data independence in a tree structure. The SIMD-type 
structure enables the leaf data to be processed in parallel using more than 
one processor. In representing lists, the ATOM retains the semantic 
attributes of the lists so that they can be processed as they are. This is 
a characteristic of the list representation made by the ATOM. 

According to Pleszkun, et al.,7 the list representation made by the ATOM is 
identified with structure-coded list representation. As stated in the 
reference literature (7), the structure-coded representation permits high- 
speed access to lists. Therefore, the ATOM also enables high-speed list 
accessing. In addition, it efficiently supports pattern matching. Up to 
now, the utilization of the structure-coded representation for LISP machines 
has not been studied much.7 The ATOM has not been developed as a LISP 
machine, but it will become the first real machine to have the capability 
of list representation introduced above. 

In Section 2 of this article, the above-mentioned new type of list 
representation will be explained. In Section 3, the architecture of the 
ATOM will be described. Section 4 will deal with the list processing system 
of the ATOM.  In Section 5, the results of simulations will be discussed. 

2. List Representation 

In the ATOM, a list is represented by a set of leaf data. The leaf data 
referred to here comprises the element included in an end node to which a 
node address in the tree structure has been added. 

<list-data> ::- {<leaf-data>*} 
<leaf-data> ::- <node-address> 

<atom> 

The node address is represented in a vector. When an expression S is 
represented using a multilevel tree, as shown in Figure 1, the data 
representing it comprises numbers extracted from different levels of the 
tree and arranged in ascending level order. Each level of the tree is 
assigned consecutive numbers arranged in ascending order from left to right. 
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Take a list comprising 

( A ( B ( C ) ) D ), 

for example.  It is represented by data, 

{ [1]A [2 1]B [2 2 1]C [3]D } 

A characteristic of this list representation is that each piece of leaf data 
is highly independent. This is because, in this list representation, each 
piece of data has information regarding its own absolute location in the 
tree structure. Therefore, this list representation is not dependent on the 
order of the leaf data. For example, the above list can also be written as 
shown below. 

{ [2 1]B [2 2 1]C [3]D [1]A } 

It is possible to interpret this list representation as representing a list 
in the form of a table of node addresses and elements. In this article, the 
list representation by the ATOM will subsequently be referred to as the 
tabular list representation.3 

Figure 1. Node Addresses of Leaf Data 

The ATOM has a structure incorporating more than one processor to process 
leaf data (entries in a tabular list representation) in parallel. Since the 
leaf data have the above-described properties, they can be processed in 
parallel. 

To actually enable the parallel processing of leaf data to occur, it is 
necessary to set such specifications as the number of leaf data to be 
processed in parallel and the number of node address bits. According to the 
analysis of some typical application programs, of the lists that became the 
objects of processing, those with a length of 255 or more, a depth of 8 or 
more and 64 or more leaves accounted for 5 percent or less. 

Based on the above results, we have set the number of leaf data processes 
at 64, the node address vector length at 8, and the number size at 8 bits. 
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A multilevel tree corresponding to the list example above is shown in 
Figure 2 along with the corresponding tabular list representation. The 
contents of the address part of the table shown in Figure 2 constitute node 
address vectors. The size "8 bits x 8" defines the maximum number of 
subnodes a node can hold and the maximum depth of lists that can be 
processed. The number of entries in the table, up to 64, corresponds to the 
maximum number of atoms that can be included in a table. A list that does 
not comply with these restrictions is treated as an exception to be divided 
into sublists for exceptional processing. 
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Figure 2.  Tabular List Representation Example 

3.  Structure of ATOM 

As shown in Figure 3, the ATOM consists of one DOU (data operation unit) and 
more than one SOU (structure operation unit). In the ATOM, it is only the 
DOU that reads instructions and operates under self-control. The SOUs 
operate only concomitantly with the DOU. The DOU, like an ordinary 
computer, consists of a microprogram-type controller, a memory, registers 
used for data processing, and an ALU (arithmetic and logic unit). Ill 
addition, it has an interface for use in exchanging data with the SOUs. The 
SOUs have identical structures, mainly comprised of a leaf memory for 
storing leaf data, registers, an ALU, an M flag used in the matching 
operation, an E flag used to indicate that the SOU has no leaf data, and 
other flags used to indicate the results of operations performed by the ALU. 
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Figure 3.  Block Diagram of ATOM 
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Each word of the data stored in the DOU consists of 40 bits as shown in 
Figure 4. Of the 40 bits, the high-order 8 bits constitute a data tag and 
the remaining 32 bits carry actual data. For an atom, the data part 
contains a pointer or a data value. For a list, it contains an address in 
the SOU's leaf memory where leaf data included in the list are stored. A 
set of leaf data making up a list is stored at the same addresses in the 
leaf memories of different SOUs. 

»bit 32bi t 

< ? ?■■"                                                             - 

TAG DATA 

LIST e LEAF MEMORY ADDRESS 

ATOM i VALUE 

Figure 4. Data Stored in DOU 
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Figure 5. Execution of SMOV Instruction 

Figure 5 illustrates the execution of an SMOV instruction issued to transfer 
data. In the example shown in Figure 5, list data is transferred from the 
memory to registers. The registers of each SOU are related to specific 
registers of the DOU. When list data are read from leaf memories, they are 
stored in SOU registers. The operation performed when an SMOV instruction 
is executed differs according to whether the target data is an atom or a 
list. When it is a list, in addition to the DOU operation, the SOUs are 
also operated as described above. In this case, first the 40 bits of data 
at the effective address given by the SMOV instruction is read from the DOU 
memory. Then, in the DOU, the data tag is checked to determine whether the 
data read out is list data. If it is found to be list data, the DOU sends 
out the low-order 32 bits of the data to the memory address bus connected 
to the SOUs. Each SOU then transfers the leaf data stored at the specified 
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address of its leaf memory to its registers. In this way, all the leaf data 
making up a list are transferred to registers of all the SOUs at the same 
time. Subsequently, the SOU registers to which the leaf data have been 
transferred are kept interlocked with the corresponding DOU registers. In 
other words, normally in the ATOM, once the list data are loaded in the 
registers, the entire list can be processed. The leaf data composition in 
each SOU is shown in Figure 6. The value part consisting of 40 bits is 
identical with that of the data composition in the DOU, but the leaf data 
does not contain list data. 
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Figure 6. Leaf Data Composition in SOU 

The DOU and the SOUs are connected by a 128-bit wide data bus through which 
leaf data are transferred. This data bus is used, for example, to merge 
leaf data to link lists or to bring specific leaf data into the DOU. 

Selection Trap 
Classification Instruction examples condition condition 

Leaf processing 
List move SMOV, SPUSH, SPOP No No 
Leaf move GET LF Yes No 
Leaf merge MERGE, APND No No 
Leaf delete DEL-LF Yes No 
Node address ADD TAD,SUB_TAD,SHD_AD Yes Yes 

operation 

Matching 
Leaf matching MCH LF Yes Yes 
Node address MCH AD Yes Yes 
matching 

Element matching MCH_VL Yes Yes 

Table 1 lists some of the instructions included in the instruction set used 
by the ATOM in performing various list processing operations. As shown in 
Table 1, some of the instructions listed permit a selection or trap 
condition to be specified. A selection condition, if specified, causes only 
the selected leaf data to be processed. To specify it, the earlier- 
mentioned M flags of the SOUs or the ALU flags are used. A trap condition 
can be specified in the same way as a selection condition can. It is used 
to delete leaf data after the execution of an instruction. 
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4.  List Processing 

In this section, the principal list processing operations performed by the 
ATOM will be explained. 

(1)  Basic list operation 

The basic list operation, such as car, cdr, and cons, can be performed by 
properly combining leaf-data node address processing, specific leaf-data 
deletion and leaf-data merging. The cdr operation, for example, for the 
previously mentioned list ( A ( B ( C ) ) D ) can be performed as shown 
below. 

cdr( { [1]A [2 1]B [2 2 1]C [3]D } ) 
- { [0]A [1 1]B [1 2 1]C [2]D } 
- { [1 1]B [1 2 1]C [2]D } 

In this operation, 1 is subtracted from the heading number of the node 
address vector for every item of leaf-data, and the leaf-data corresponding 
to the node address vector that becomes 0 following the subtraction is 
deleted. 
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Figure 7. cdr Operation 

The processing actually performed in each SOU during the above operation is 
illustrated in Figure 7. During the process marked 2 in Figure 7, the two 
operational steps described above are performed simultaneously against the 
leaf-data stored in the SA register. The leaf-data whose node address 
vector becomes 0 following subtracted of 1 is trapped and deleted (the trap 
condition mentioned in Section 3 has been specified). More specifically, 
the E flag of the specific SOU is set, indicating that the SOU has become 
empty. As indicated in Table 1, the trap condition can be specified for 
all the node address operation instructions and also for the match 
instructions explained later. The SOU having its E flag set does not 
operate.  It is treated as if it stores no data. 
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As mentioned above, in the DOU, the list and atom data are represented 
differently. Therefore, when list processing produces atom data, it becomes 
necessary to change the data format in the DOU. The car operation for the 
list (A(B(C))D)is performed as shown below. 

car ( { [1]A [2 1]B [2 2 1]C [3]D } ) 
- SHIFT_UP_ADDRESS( { [1]A } ) - { []A } 

In the above operation, a node address shift-up (the heading data is deleted 
from the node address vector, reducing the leaf-data depth by one level) 
occurs and, as a result, only one piece of leaf-data, without any node 
address, is obtained. In the above case, it becomes necessary to change the 
data format in the DOU as previously mentioned. The data format is 
automatically changed via the SOU interface (SF) in the DOU. More 
specifically, when an element produced as a result of an operation loses its 
node address, the SF detects it through hardware and the DOU microprogram 
changes the contents of the corresponding register in the DOU into an atom. 

(2) Accessing atoms in specific locations in list 

This operation becomes necessary quite often even though, since it is 
executed using such functions as car and cdr for list processing, its 
function is not included among the basic ones for list processing. The list 
processing language pop-11 offers this function.6 When an ordinary list cell 
operation method is used, this operation is performed by tracing the target 
list until the target atom location is reached. The ATOM enables the target 
atom location in a list to be reached directly. When the ATOM performs this 
operation, it first outputs the target node address from the DOU to the data 
bus, providing an instruction for the matching operation executed by the 
SOUs. As indicated in Table 1 matching can compare a leaf-data node 
address, leaf-data value or an entire set of list representation in each 
SOU with the data existing on the data bus. When the data from an SOU is 
found to match the data present on the data bus, the M flag of the SOU is 
set. After the M flag of the SOU storing the element to be accessed is set, 
the DOU can access the SOU directly (by specifying the M flag as the 
selection condition). Figure 8 illustrates an example of a matching 
operation. 

(3) List Comparison 

The equivalence between two lists can be determined based on the following 
two conditions: 

(i) All the leaf-data included in a list are also included in the other 
list. 

(ii) The other list contains no other leaf data. 

The second condition has become necessary since the list representation by 
the ATOM does not include a termination indicator "nil." 
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Figure 8. Matching Operation Example 

This list comparison can also be performed directly, without involving 
indirect list processing. When it is performed, first, the two lists to be 
compared are loaded into registers from memory. Subsequently, the leaf data 
included in one of the two lists are sequentially read out to the DOU and 
are matched with the contents of the other list in the above-described 
manner. The matching leaf data found between the two lists are deleted. 
The matching operation is performed for all the leaf data included. If the 
two lists are found to have become empty upon the completion of the matching 
operation, the two lists are judged to be equivalent. 

In the above-described way, the list comparison operation, complex and time- 
consuming when performed by the conventional method, can be executed through 
the simple repetition of leaf data comparison by the ATOM. 

(4) Pattern matching 

Pattern matching becomes necessary when one of the two lists compared for 
determination of equivalence comprises a pattern. A pattern, as referred 
to here, is a list containing undefined elements. More specifically, it is 
a list with some elements represented by variables. 

In the ATOM, the variables involved in the matching operation are also 
assigned a data type. The data type assigned constitutes a piece of atom 
data identified by a tag. Therefore, a pattern, if containing no segment 
element, can be compared with a list as described above, except for the 
binding of open and closed variables. In comparing them, open variables are 
regarded, at the instructional level, as unconditionally matching whatever 
value will improve the matching efficiency. 

If the pattern contains a segment variable, the element following the 
segment variable is searched for in the data list, and the elements skipped 
during this process are bound to the segment variable. When this operation 
is performed, an environment preservation process required for back-tracking 
is also executed. 
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As described above, a segment variable can be processed through the 
retrieval of the subsequent element. The retrieval is easy. When a segment 
variable occurs, the ATOM outputs the value part of the next leaf data from 
the DOU to the data bus and compares the output value with the data store 
in each SOU. 

5.  Simulation Results 

To verify the effectiveness of the ATOM architecture, we carried out a 
dynamic characteristic examination and a preliminary performance evaluation 
using sample programs before analyzing real-use programs on a real machine. 

Specifically, we created a simulator, of the machine language level, for 
collecting such data as the execution frequency of each machine-language 
instruction and the total number of execution cycles (counted with the 
addressing mode and data taken into consideration) and executed the 
following programs using the simulator. 

(a) Differential program (Derivative) (4) 
(b) Monkey and bananas (5) 

The differential program is designed to differentiate the symbols included 
in simple polynomials. The processing performed by the program mostly 
comprises list processing, with no pattern matching. Coding is by manual 
compilation based on the assumption that the LISP program mentioned in the 
literature* is to be executed on the ATOM. For the reader's information, 
"cons" and function designator are frequently executed in the LISP program. 

The Monkey and Bananas program is often used as a production system sample. 
Most of the processing performed by this program comprises pattern matching. 
The Rete algorithm1 is not used in this program. The patterns appearing in 
this program do not contain segment variables. We carried out coding 
directly, using the ATOM assembly language, while being somewhat concerned 
about high-level languages. 

(1) Examination of dynamic characteristics 

We classified the instructions for use by the ATOM into groups and 
calculated the ratio, among the instruction groups, of the execution of each 
group of instructions as well as that of the number of execution cycles 
counted during their execution. The results are listed in Tables 2 and 3. 
From the results of the ratio calculations, the following can be said: 

1) The instructions for list moving are the highest with regard to the 
ratios of both execution frequency and the number of execution cycles. It 
is assumed that they are executed mostly for accessing stacked parameters. 
Therefore, the ATOM operation will be accelerated further with the adoption 
of a stack cache. 

2) Even in such a program as Monkey and Bananas, that performs mostly 
pattern matching, the number of execution cycles counted during the 
execution of matching-related instructions is about 10 percent of the total 

40 



Table 2.  Instruction Execution Ratios for Differential Program 
Execution Execution 
frequency cycle count 

Classification Instruction examples ratio (*) ratio (%) 

Leaf processing 
List move SMOV.SPUSH.SPOP 32 37 
Leaf move GET LF 26 22 
Leaf merge MERGE,APND 26 22 
Leaf delete DEL LF 26 22 
Node address ADD TAD,SUB TAD.SHD AD 26 22 

operation 

Matching operation 
Leaf matching MCH LF 0 0 
Node address MCH AD 0 0 
matching 

Element matching MCH_VL 0 0 

Tagged-data operation SADD.SEQ.SETT 3 3 
instructions 

Control instructions JMP,LOOP,CALL,RET 17 18 

Other general 
instructions ADD.TEST.DEC 22 20 

Table 3.  Instruction Execution Ratios for Monkey and Bananas 

Classification instruction examples 

Execution  Execution 
frequency  cycle count 
ratio (%)  ratio (%) 

Leaf processing 
List move SMOV.SPUSH.SPOP 25 33 
Leaf move GET LF 22 19 
Leaf merge MERGE,APND 22 19 
Leaf delete DEL LF 22 19 
Node address ADD TAD,SUB TAD.SHD AD 22 19 

operation 

Matching operation 
Leaf matching MCH LF 10 8 
Node address MCH AD 10 8 
matching 

Element matching MCH_VL 10 8 

Tagged-data operation SADD.SEQ.SETT 1 1 
Instructions 

Control instructions JMP,LOOP,CALL,RET 23 21 
Other general 

instructions ADD.TEST.DEC 19 18 
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number of cycles. This low ratio is thought to be attributable to the 
effect of parallel leaf-data processing, made possible by the ATOM 
architecture. 

3) The execution cycles counted during the execution of the instructions 
for leaf processing (various instructions are combined to perform basic list 
processing), excluding those for list moving, account for about 20 percent 
of the total execution cycles. 

4) When the leaf processing, matching operation, and tagged data processing 
performed by the ATOM are referred to jointly as symbol processing, the 
ratio of symbol processing to nonsymbol processing, with regard to the 
number of execution cycles, is 6:4. The non-symbol processing is performed 
through the execution of control instructions and other general 
instructions. The number of execution cycles counted during symbol 
processing, as well as those counted during non-symbol processing, accounts 
for about 20 percent of the total number of executed cycles. 

(2) Comparison with conventional machines 

To compare the ATOM with the Symbolics-3600 (Common LISP) and SUN3-260 (pop- 
11), programming was conducted on the three machines using the respective 
languages. For the ATOM, the execution time was calculated based on the 
total number of execution cycles determined by carrying out simulation with 
the microprogram cycle set to 125 ns (8 MHz). During the sample program 
simulations, no list requiring the exceptional processing mentioned in 
Section 2 occurred. The execution times calculated based on the results of 
sample program simulations are listed in Table 4. 

Table 4.  Sample-Program Execution Time (in ms) 
Sample '        Machine -                   SUN        SYMBOLICS 
program name ATOM (POP-11) (Common LISP) 

Differential program 0.43 (1)   2.5  (5.8)    0.76  (1.8) 

Monkey and Bananas 11  (D   250  (23)     1,260 (115) 

Note:  Figures in ( ) indicate execution times relative to the base figure 
of 1 for the ATOM. 

Even though the execution efficiency achieved by the ATOM in executing the 
differential program, when compared to the execution time required by the 
other two machines, was not very great, the improvement exhibited by the 
ATOM in executing Monkey and Bananas was remarkable, indicating the ATOM'S 
potential for high-speed processing. As mentioned before, the differential 
program is mostly comprised of list processing, while the contents of 
processing performed in the Monkey and Bananas mainly include pattern 
matching. Therefore, the difference in high-speed processing efficiency 
exhibited can be assumed to have resulted from the fact that the ATOM 
architecture was more suitable for pattern matching than for list 
processing. 
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6.  Conclusion 

A new tabular list representation that utilizes list cells, differing from 
the conventional list representation, and the architecture of the symbol 
processing machine ATOM that has been designed to process the new list 
representation at high speeds have been described. Simulations were carried 
out to study the dynamic characteristic of the ATOM and to evaluate its 
performance preliminarily. 

The results of simulations performed using sample programs have indicated 
that the ATOM, as it has been intended, is noticeably efficient in 
accelerating the execution of programs, the contents of which mostly 
comprise pattern matching. Therefore, the ATOM architecture that enables 
the parallel processing of leaf data has been ascertained to be effective 
in executing programs at high speed. 

At present, ATOM hardware of the bit-slice type for operation under 
microprogram control is being developed. The microinstructions are of a 
128-bit horizontal type. Each consists of fields used to control the DOU 
and SOUs independently. The leaf memory of each SOU will be able to store 
64 K leaf data, and the basic capacity of the DOU memory will be 2 M words. 
A service processor is linked to the ATOM in order to realize the functions 
of microprogram loading, debugging, and monitoring. 

The future tasks with regard to the ATOM include a performance evaluation 
through the execution of large-scale programs on the real machine, an 
adaptability study of algorithms, e.g., Rete, in order to enhance the 
matching efficiency in production systems, and the materialization of the 
algorithm judged desirable according to the study results. 
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[Text] Parallel processing architecture for realizing intellectual sensors 
is discussed here. First, the sensor information processing configuration 
is outlined and classified into two types, i.e., the SIMD-type and MIMD- 
type. Then, the characteristics of each type and its application field are 
described. In addition, as concrete prototype systems, 1) the prototype 
parallel processing chip (SPE-8) and its application to a tactile sensor 
(SIMD), 2) the designing of large-scale parallel processing, and 3) a 
passive-type sensor system which uses a transputer, are described. Problems 
associated with processing architecture in realizing sensor fusion and neuro 
computing are investigated from the aspect of sensor information processing. 

1.  Introduction 

Among the various automated devices which comprise an intelligent robot, 
sensors hold the key to their high performance functions and mechanisms. 
Recently, along with the progress in the higher integration of electronic 
circuits, the realization of the concept of sensor intellectualization is 
in great demand. With this concept, sensors are not recognized as simple 
signal conversion devices as they have been in the past. Instead, they are 
thought of as information processing modules by conducting the sensor's 
inherent processing using a subsistent operation processing mechanism in 
combination with detection functions. When this operation processing 
mechanism is viewed from the processing system, i.e., the entire computer 
system, it seems to be part of a parallel distributed structure. 
Unfortunately, however, parallel architecture is not currently well 
recognized. 

Accordingly, when taking sensors applied to an intelligent robot as an 
example, the sensor's processing configuration is divided into two 
categories. One includes the processing of information from high 
homogeneous sensors centered around pattern processing, and the other is the 
processing of information from heterogeneous sensors. Suitable architecture 
for each processing configuration will be shown, and their comparisons made. 
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First, regarding parallel processing architecture of the SIMD structure that 
is suitable for the former's configuration, the LSI architecture for 
parallel processing whose prototype was constructed to realize local pattern 
processing is shown. The example of a tactile sensor combined with the 
detection unit is described. In addition, a plan to realize large-scale 
parallel processing by the use of multiple LSIs is outlined. 

Then, an experimental language to describe the processing structure of a 
sensor is discussed. From the viewpoint of sensor fusion which integrates 
and unites various kinds of sensor information, the architecture mentioned 
above is arranged, and a technique for its realization is proposed. 

In addition, the positioning of sensor information as part of the 
realization of a computation structure based on the neuron network model and 
method to realize the processing structure, which have become the subjects 
of study in recent years, are also discussed. 

The architecture discussed in this paper is able to connect sensors, i.e., 
I/O directly with each CPU. This is due to the attempt to suppress the I/O 
bottleneck under parallel processing. In this respect, it is the 
architecture that is believed to regard the I/O as important. Particularly, 
since the I/O formation plays an important role, this architecture is 
indispensable in realizing the neuron network model. 

2.  Parallel Processing in Sensor Information Processing 

2.1.  Intellectualization of sensors 

Prior to discussing the definite processing structure, a concept1 regarding 
the intellectualization of sensors is outlined as it relates to the entire 
system, and is then organized. 

The recent advances in the integration technology focusing on semiconductors 
has brought small and high performance devices of various kinds based on the 
LSI technology. Due to improvements in the degree of integration, the basic 
design concept of a circuit and a computer system has been drastically 
changed. Namely, such design standards as optimization, high speed and 
minimization, which were taken into consideration in the past, have 
disappeared. Instead of these, the possibility, simplicity and flexibility 
of integration and also the existence of CAD are currently accepted as the 
design standards. In addition, as the degree of integration increases, the 
fact that communications costs are becoming higher than the computation 
costs has been suggested a problem mainly associated with the complicated 
wiring inside the LSI.2 However, this involved not only the problems related 
to the LSI itself, but also those related to the entire computer system. 
In this respect, distributed processing appears as one means of solving the 
problems, i.e., under the concept in which local processing is carried out 
by a local processing mechanism, the idea of "transmittance after 
processing" rather than "transmittance before processing" is attempted. 
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This idea can be applied to the processing of sensor information without 
making any changes. In this case, the existence of essential communications 
limits the sensor's output. This differs from the computer system, as does 
the problem involving cost. A communications path between a sensor and the 
central processing mechanism has a limited number of wires and 
communications capacity. This could limit sensor applications. In order 
to solve this problem, it is necessary to improve the quality of the data 
that flows in the communications path in order to utilize the limited 
communications capacity effectively. To do so, it is necessary to join the 
processing mechanism with a detector. This means that a sensor should not 
be recognized as a simple detection converter, but instead, should be 
thought of as an independent signal or information processing module. This 
is called a sensor's intellectualization. 

2.2 Concept of Sensor Processing 

Following is a summary of the sensor processing concept. Processing on a 
sensor must be captured through a broader concept than that of ordinary 
processing. Figure 1 explains this idea. As shown in this figure, when x 
is thought of as a phenomenon involving measurements or the state of the 
system fl, a measured quantity x forms a part of the state x, and is 
converted to that sensor's output s through the sensor's detection 
conversion mechanism. This process can be expressed by equation (1), where 
w is a physical phenomenon that rules O, and is used as an operator. 

S - w(x) (1) 

The ideal mechanism of the sensor is obtained when the operator w, with 
respect to the measured quantity x, becomes equation (2) as part of w, 

s - w(i) (2) 

provided that w is approximately analytical, i.e., if the inverse operation 
Sf1 can be realized (linear is preferable), it is acceptable. In other 
words, it is acceptable if x is selected from x. In this regard, it is said 
that a sensor is the device used to extract and select information. 
However, if the sensor's output s itself cannot realize an ideal sensor, an 
additional operator a  is applied to s. 

s' — CT(S) - aw(x) (3) 

a is designed so that the quantity aü> becomes approximately analytical. 
This means that the processing of a by a sensor involves only the expansion 
of the inherent sensor's mechanism S. Instead of simple processing of a, 
the more essential phenomenon w and/or processing of the characteristics (w) 
of the sensor itself must be taken into consideration along with their 
combinations. 

Therefore, since physical and chemical quantities, including electric 
quantities through the sensor characteristics, are dealt with, the 
realization of a processing structure which utilizes these characteristics 
is thought to be possible.  Based upon this way of thinking, the author 
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Figure 1.  Concept of Processing on a Sensor 

developed a sensor3 to extract the center of the pressure distribution by 
using a pressure sensitive conductive rubber, a sensor * to display pressure 
distribution using a pressure sensitive conductive rubber and liquid 
crystal, and an association memory system5 for use with optical operation. 
These devices are designed to realize parallel computation as a physical 
phenomenon, instead of as an electronic circuit. In this respect, they 
comprise a kind of parallel processing. 

However, the realization of this processing depends on the characteristics 
of an object. Since the sensors are usually for exclusive use, a limit is 
placed on their application in most cases. The realization of general- 
purpose processing is not easy. In this situation, the processing used for 
specific purposes is not going to be discussed. Instead, the processing 
architecture for general purposes is proposed through the introduction of 
processors with different configurations. 

2.3 Mechanism and Configuration of Sensor Information Processing 

First, the processing mechanism of a sensor, i.e., the mechanism and 
functions of a mentioned above, is classified, and examples of concrete 
operations are presented. Table 1 summarizes these sensor classifications. 

Table 1.  Classification of Sensor Processing Mechanisms  
Classification    Mechanism Operation example 

Correction 

Operation 

Control 

Transmittance 

Display 

Handling 

Compensation, correction, 
noise elimination lineari- 
zation 
Abstraction of features, 
conversion, learning, trans- 
formation, integration, 
recognition 
Execution of measurement 
algorithm, passive sensing 
Output conversion, standard- 
ization, compression, 
modulation 
Distribution display, dens- 
ity conversion, visualization 
Instruction execution 

Average, comparison, 
filtering 

Correlation, average, 
centroid, sum, moment, 
comparison 

Servo, sequence control, 
scanning 
Coding, encoding, error 
detection/modification 

Correlation, scanning, 
image abstraction 
Parameter adjustment, 
sampling order  
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Of these mechanisms, when some of them are strongly and/or directly related 
to processing peculiar to a sensor, the effectiveness of the sensor's 
intellectualization can be expected to a great extent. 

Toward such intellectualization, many attempts have been made to unify the 
peripheral circuit with a detection unit on the semiconductor pressure 
sensor. One having a built-in scanning circuit has already been made.6 In 
addition to these, a sensor7 designed to unify a scanning circuit which 
converts the pressure distribution (64 x 64) into video signals utilizing 
pressure sensitive conductive rubber, a technique to obtain the center of 
the pressure distribution under a matrix configuration utilizing a parallel 
processing circuit, and the passive sensing method which would recognize the 
outline of an object by conducting positioning control of patterns with the 
above-mentioned circuit are also proposed.9 The integration of peripheral 
circuits becomes a very important subject for these sensors when realizing 
the detection structure corresponding to each sensor. 

However, the method utilizing the physical structure, as described above, 
and/or intellectualization by electronic circuits are for specific usage, 
not for general purpose use. Therefore, in order to realize processing for 
more general purpose use, the introduction of processors under some 
configuration is inevitable. 

In the face of the development of intellectual sensors to be used with 
processors, advances in distributed processing for the entire system using 
sensors is highly anticipated. Namely, it is necessary to make the 
positioning of the entire system a staged multiprocessing system. From the 
top-ranked processor to the bottom-ranked sensor or actuator, through each 
rank of level, a processor responsible for inherent processing at each level 
should be realized.  This is the idea suggested. 

In this paper, the processing of a sensor located in the bottom rank is 
discussed. In other words, an attempt is made to get the processor to 
conduct inherent processing for a sensor and to place the processor 
executing parallel processing inside a sensor. 

2.4 Parallel Processing of Sensor Information 

The structure of parallel processing involving sensor information is 
generally divided into two classes, and their characteristics are discussed. 

The first configuration corresponds to processing information from visual 
or tactile sensors which are placed on a matrix or array. The main purpose 
of this kind of processing involves pattern processing focused on 
correlative computation.  It is suitable for SIMD-type processing. 

Regarding the sensor that corresponds to the above configuration, Raibert, 
et al., are studying a prototype tactile sensor which involves LSI 
application, called the VLSI tactile sensor.10 In this sensor, a metal 
electrode is placed directly on 6 x 3 parallel processors arranged on a 
silicon wafer, and the pressure sensitive conductive rubber placed on it is 
used as the pressure sensitive material.  Then, a correlative computation 
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of the pressure distribution information is executed. This is the purpose 
of the sensor. In this paper, the processing structure of this sensor is 
discussed in Chapters 3 and 4. 

The second configuration involves the processing of information from 
heterogeneous sensors. Since a lesser degree of homogeneousness exists in 
this processing configuration, this sensor is suitable for MIMD-type 
processing. With regard to this kind of sensor, Henderson, et al. , proposed 
the concept of a logical sensor.11 The function of this device is to realize 
a flexible processing network by defining the logical sensor of the abstract 
data-type as a processing module, in order to avoid the confusion related 
to the software accompanying the sensor's intellectualization. That is, the 
processing of heterogeneous sensors can be broken down into a processing 
module peculiar to each sensor. An intellectual sensor results from making 
hardware using the processing sensor. Its processing structure is described 
in Chapters 5 and 6 in this paper. 

3. Local Pattern Processing LSI "SPE-8" and Intellectual Tactile Sensor 

First, an outline of the LSI pattern processing used to execute local 
parallel operations and its actual application to a tactile sensor will be 
discussed as an example of an intellectual sensor conducting SIMD-type 
processing. 

3.1 Design Concept of Local Pattern Processing LSI "SPE-8" 

Using parallel processing LSI to execute local pattern processing was 
developed first. This LSI is called "SPE-8 (sensory processing element-8)" 
since eight processing elements corresponding to a sensor are placed on one 
chip. 

In designing the SPE-8, the realization of scanning parallel processing and 
perfect parallel processing was assumed to form the structure of the sensor 
using the SPE-8. The realization of scanning parallel processing is 
discussed in Section 3.4, and that of perfect parallel processing is 
discussed in Chapter 4. 

The objective of designing the LSI and sensor is to realize high integration 
and high speed while maintaining the general-purpose characteristics. In 
order to maintain these characteristics to some extent, the sensor was 
separated from the processing portion, and a structure making the cascade 
connection possible was adopted in order to correspond to differences in 
kinds of sensors and the number of detection points. In addition, in order 
to promote high integration and high speed, a method to input information 
directly from the sensor into the processing elements was used. 
Furthermore, since bit serial operation was adopted as the inner operation 
method, a circuit was constructed according to the limited number of gates. 
Functional degradation was incorporated through the increased parallelism, 
and the composition of a transmitting circuit and scanning circuit was also 
taken into consideration. In addition, the application of a compact circuit 
to the sensor was attempted. 

50 



3.2 Structure of SPE-8 

As described above, the SPE-8 is a pattern processing LSI with eight built- 
in processing elements. Its structure is shown in Figure 2. The eight 
processing elements employ the 1x8 composition. Each processing element 
has one channel for input and four pairs of connecting wires in four 
different directions. There is a common instruction among the processing 
elements, of a 10-bit composition (op code 2 bit + substantial field 8 bit). 

tlllill 2 7 
PE i 

1   IiMtruetton ta«»sfa>r 

10 II 12 13 14 IS IS 17 IS 19 
opcode 
(2) 

operand 
(8) 

Figure 2.  Structure of SPE-8 

3.3 Structure of Processing Element 

The structure of the processing elements in SPE-8 is shown in Figure 3. 
Since SPE-8 is intended to be a general-purpose LSI for pattern processing, 
a multiplication/addition operation function enabling correlative operation 
is provided in addition to general logical operations and 
addition/subtraction operations. Moreover, because bit serial operation is 
adopted, 1-bit, 4-bit, and 8-bit operation is possible. 
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Figure 3.  Structure of Processing Element 

There are three shift registers inside the processing element, respectively 
called A (accumulator), T (template), and W (weight). Each register is 
divided into the upper ranked 4 bits and lower ranked 4 bits. Swapping of 
each 4 bit [segment] is possible within a register. Only the upper ranked 
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4 bits on the W-register can be utilized as the multiplication substitute. 
Data with a 1-bit length corresponds to on-off patterns. Since a register 
has 8 bits, the processing of 8 data items per register is possible. 

Input from the sensor is diversified (becomes multiplex) along with 
information from neighbors and registers through a Schmidt trigger, becoming 
I-information as shown in Figure 3. 

As a multiplication device to realize multiplication/addition operations, 
an improvement by reducing the number of gates takes place for Booth's 
algorithm, currently in general use. Due to this, 4 bit (W-register's upper 
ranked 4 bit/parallel) x 4 bit (I-data 4 bit/serial) ■* 8 bit (8 bit/serial: 
input of ALU) multiplication can be realized by a compact circuit. 

At ALU, bit serial operation, i.e., serial operation beginning with the 
lower ranked bit, in order, is carried out. The precise control of the 
carry bit makes variable data operation possible. There are four different 
operations--AND, OR, EXOR (exclusive OR) and addition. The handling of 
negative numbers is possible at an input of the B-side due to the treatment 
of a sign bit. Regarding the handling of the sign and carry bit, the upper 
ranked 4 bits (same as 8 bit handling) and lower ranked 4 bits can be used. 

An output is chosen from an ALU output, while A and T register outputs and 
I data. The reason for using I is to permit input data to pass through. 
It compensates for a 4-neighbor connection, i.e., neighboring data in the 
oblique direction of 8 neighbors is connected by two sets of 4-neighbor 
connections. 

There are actually 32 control bits inside the SPE-8. However, its 
composition is of the intensive form of 4 kinds of 10-bit sections, 
classified according to the execution formation. Since this instructional 
data is mostly stored by instruction registers, the conditions are 
maintained without instructional change. 

Regarding the control of the SPE-8 interior, synchronizing control using a 
clock pulse (CP) is applied. A maximum four-stage pipeline structure is 
adopted inside each cell. 

Two different kinds of instruction control methods are assumed. One is the 
method employing a microprogram involving inherent memory of firmware. The 
other is the method utilizing an I/O processor by connecting the I/O with 
a computer. Since subroutine calls and various conditional judgments can 
be accomplished with the microprogram control method, high level 
intellectualization is achievable. In this case, however, the scale of the 
circuit becomes larger. This means that it is not advantageous to reduce 
the size. In the case of the I/O processor method, reducing the size is 
easy, but achieving high speed is difficult. 

The general specifications for the SPE-8 are shown in Table 2. As seen in 
this table, the SPE-8 adopts the gate array of 3312 gate integration at its 
maximum.  Its actual integration is 2970 gates.  This function can be 
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Table 2.  Specifications of SPE-8 
Items Specifications 

Degree of integration  MAX:  3312 gates/chip (2 input NAND conversion) 
Real:  2970 gates/chip (2 input NAND conversion) 

- 337 gates/cell x 8 + 274 gates/chip 

Delay time 2 ns/gate (inner gate F/0-3, wiring length 3 mm) 
3 ns (input buffer F/0-3, wiring length 3 mm) 
10 ns (output buffer CL-15 pF) 

Power supply 5 V + 5 percent single power supply 

Input/output TTL compatible 

External shape        80-pin, flat package 

realized by 337 gates per processing element, while 274 gates are necessary 
for the normal part. 

A maximum execution speed of 87 ns (loading capacity 30 pF) was attained as 
the result of the delay simulation of a critical path. The actual measured 
result on the test circuit (memory cycle time: 55 ns) was a 90 ns cycle 
time, including a delay on a peripheral circuit. 

All functions of the SPE-8 were confirmed through software simulation with 
CAD, tests employing a LSI tester and through the use of an actual circuit. 

3.4 Intellectual Tactile Sensor 

An example of the intellectualization of a tactile sensor employing LSI will 
be discussed. This intellectual tactile sensor is able to realize local 
pattern processing with a high speed when combined with a detection unit 
(8 x 8) that uses pressure sensitive conductive rubber. 

The characteristics of the processing when a tactile sensor is used are: 
1) the amount of detectable information is not as great as that of vision, 
and the localization of the processing is strong; 2) it is necessary to 
deal with local pattern information; 3) high-speed processing is demanded 
since results are sent directly to an actuator system as feedback; 4) the 
sensor is usually installed on the arm and hand of a robot. Therefore, 
small size and light weight, including compact wiring, are necessary. Due 
to these features, the effectiveness of the unification of operation' 
circuits and signal transmittance circuits with a detection unit is believed 
to be considerable,14,15 and its development is eagerly awaited. 

An example of the composition of the tactile sensor with the SPE-8 is as 
follows. Figure 1 shows its circuit structure, and Photograph 1 [not 
reproduced] shows the prototype sensor. As shown in Figure 1, the sensors 
placed on a matrix are scanned in one direction, and one processing element 
is allocated to one row.  Due to scanning, its processing time becomes 
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longer than that of the perfectly parallel processing method. 
Simultaneously measurement is not possible with this method. However, its 
practical processing time is sufficient, as will be mentioned later. 
Regarding integration, this method has an advantage in that one SPE-8 can 
handle 64 (8 x 8) sensors. With regard to pressure information, a change 
in the resistance of pressure sensitive conductive rubber is detected by an 
electrode. However, since 1-bit operation is used in this case, only on- 
off information is processed. Because the register of the SPE-8 is 8 bits, 
each cell can handle only 8 points. When more than 8 points are needed, 
cascade connections among SPE-8s are possible. 

y preaeure- 
conduclive 
rubber 

OUTUT 
processing 
element 

Figure 4.  Circuit Composition of Tactile Sensor With SPE-8 

As seen in Figure 4, a diode is placed at each detection point. Pressure 
sensitive conductive rubber is cut into strips, and nonconductive rubber of 
the same thickness is inserted into that rubber. This prevents the flow of 
nondirect current and leakage among electrodes, which is peculiar to network 
resistance. 

Instructional control is achieved by sending a program in memory to the 
SPE-8 in order.  With this method, conditional judgment is not possible. 
However,  the confirmation of basic operations can be carried out 
sufficiently since its requirement for simple pattern processing operations 

is low. 

An actual processing execution example using this sensor is shown. In this 
example, the edge pattern of an object becomes an output. A concrete 
operation execution is: 

output - (-(qi-i,j x qi+1(j x q^^ x qi(j+i)) x qi;} 

This operation only involves 4 neighbors, and is relatively simple. When 
executing this operation, 12 steps (the establishment of a mode and the set 
of scanning data) are initially required. Once the initial setup is 
completed, actual operation is executed. This portion requires 
approximately 83 steps due to the sensor's response delay. When the cycle 
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time is 100 ns, the operation processing results are obtained as the sensor 
output at intervals of 8.3 fis. 

4.  Large-Scale Parallel Processing Using SPE-8 

The SPE-8 can realize large-scale processing since mutual connection is 
possible. Therefore, the design concept and fundamental structure of the 
architecture (called "SPE-4k") for realizing the perfectly parallel-type 
sensor information processing will be described. With this system, the 
processing of information sent from 4096 sensors is directly connected to 
4096 processing elements, utilizing 512 SPE-8 units. 

4.1 Design Concept 

Regarding perfectly parallel-type processing, many systems focusing on 
graphics processing have been proposed.16 The connection machine is of this 
type. The advantage of this type of processing involves its high speed. 
On the other hand, however, its disadvantages include less flexibility in 
SIMD-type control, the weakness of neighboring connections, large-scale 
circuits and bottlenecks in the I/O. 

Fortunately, a reexamination of this architecture from the viewpoint of the 
sensor's intellectualization revealed that these defects can be avoided by 
allocating a small-scale processing element to one sensor (I/O oriented). 
This means that, of the defects mentioned above,less flexibility in the 
SIMD-type control and the weakness of neighboring connections are not 
significant problems when the degree of exclusiveness of the sensor's 
processing is considered. The fear of getting large-scale circuits can be 
diminished through the utilization of small-scale processing elements, such 
as the SPE-8. Its size can be reduced to equivalent to or smaller than the 
size of a sensor. Bottlenecks in the I/O will not become an essential 
problem since the sensors are connected directly to the processing elements. 

The conventional system regards the operational mechanism as an important 
design consideration. Namely, it is designed under the concept whereby the 
operational mechanism architecture comes first, and then the I/O is 
connected to it. However, in this system the I/O, i.e., a sensor, is 
structured first, and then the operational mechanism is added. 

4.2 Basic Architecture 

The perfectly parallel processing intellectual sensor SPE-4k essentially 
conducts the processing of homogeneous sensor information from 64 x 64 - 
4096 points. The entire architecture is shown in Figure 5. As seen in this 
figure, SPE-4k is composed of 512 SPE-8 units. In this kind of perfectly 
parallel method, high-speed processing is possible, and no problems 
associated with the time lag accompanying scanning exist. The control 
method and connection with a sensor (optical sensor is assumed) are the same 
as those of the intellectual tactile sensor mentioned above. However, the 
integration of the whole (corresponding to 8 sensors by an 80-pin flat 
package) is not very good due to the SPE-8 package. In addition, SPE-4k is 
designed to be applicable not only to single-layer connections, but also to 
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Figure 5. Composition of SPE-4k 

multiple-layer composition (4 layers in this case) with the decomposition 

of 32 x 32 modules. 

Detailed designing of the SPE-4k is currently in progress, with its 
prototype scheduled to be constructed in the very near future. 

5.  Passive Sensor System by Parallel Processing Using Transputer 

The architecture described above is the processing configuration for similar 
kinds of sensor groups. However, many kinds of sensors are used in the 
fields of FA and robots. Accordingly, as for the processing architecture 
of the MIMD-type used to process information from various kinds of sensors, 
its design concept and structure will be discussed. 

5.1 Design Concept 

The information obtained from different kinds Of sensors has different 
properties. Moreover, it has different characteristics and configurations. 
Since it is not effective for a single processing mechanism to process 
different kinds of information in an intensive manner and, also, with the 
processing uniformity of this method being bad, the MIMD-type processing 
configuration becomes effective. However, even in this case, it is 
necessary to realize the compact configuration of operation mechanisms, such 
as the CPU and memory, as much as possible since it ultimately aims at the 
sensor's intellectualization. 

On the other hand, not only intrinsic processing functions, but other 
functions as well can be realized through the local application of general- 
purpose processors. Of them, the realization of control functions presents 
the idea of passive sensing as its fundamental concept, and is helpful m 
improving the quality and quantity of the information obtained from sensors. 
The idea of passive sensing is based on feedback control between sensors 
and actuators, and tries to construct a recognition mechanism as its upper- 
ranked concept. It also attempts to realize a real-time measurement control 
system with an advanced recognition mechanism. 
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5.2 Basic Architecture 

In order to realize this MIMD-type processing, the prototype information 
processing system composed of various kinds of sensors, termed the passive 
sensor system, has been constructed using a transputer that is a CPU 
suitable for parallel processing. Figure 6 presents a block diagram of its 
composition. 

actuator 
senaor actuator 

tensor 
actuator actuator actuator 

sensor 
actuator 

c object environment 

Figure 6.  Passive Sensor System 

The transputer is a 32-bit processor based upon the RISC concept. Its 
structure is appropriate for high speed parallel processing based on real- 
time processing. In developing a parallel processing program, the exclusive 
parallel processing descriptive language "Occam" is provided. Therefore, 
advanced parallel processing descriptive ability can be obtained. In 
addition, since communications and synchronization mechanisms for parallel 
processes are provided as hardware, problems involving the synchronization 
of multiprocessor time do not readily occur. 

With this passive sensor system, two kinds of boards and 10 transputer units 
are used in all. Among them, six units are directly connected to sensors 
and actuators through a 4-channel D/A converter (for input of information 
from the sensors) and a 4-channel A/D converter (for output to the 
actuators). One transputer, one A/D converter and one D/A converter are 
placed in one board. The remaining four units, which communicate with an 
EWS in a higher rank and conduct processing among sensors and general 
processing, are located on one board.  Communication between CPUs occurs 
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through the inherent serial link of the transputer, and communication with 
an EWS is carried out with a multibus. Therefore, due to the signal 
processing on the DWS side, a mechanism similar to parallel processing is 
realized. Nevertheless, one objective is to realize this mechanism by real- 
time processing on the transputer side as much as possible. 

The manufacturing of this system has been completed, and its performance 
evaluation and the development of application programs are currently in 

progress. 

6. Sensor Fusion 

The object of the passive sensor system mentioned above is the realization 
of sensor fusion. Its concept is as follows: 

6.1 Basic Concept 

As the number and kinds of sensors used in a system increase, the necessity 
for the integration and fusion of information from these sensors increases. 
The realization of a polymodal processing system in a heterogeneous manner 
is sensor fusion.18 Examples include binocular fusion to extract three- 
dimensional information from visual information through both eyes, and 
fusion discrepancies between visual and tactile information can be pointed 

out. 

6.2 Processing Software 

In order for such a processing system to be realized, the processing 
structure must be arranged not only by hardware, but also software. 

In this regard, the author and others developed experimental language to 
describe sensor-related processing structures, in a unified manner, from the 
aspect of software.19 This language adopted Henderson's concept of the 
logical sensor.11 As shown in Figure 7, the logical sensor denotes that 
operation processing by software or hardware is added to the output (or 
outputs) of a physical or logical sensor. In addition, the concept of the 
logical sensor is further advanced and is recognized as the language that 
includes the memory and learning functions related to sensor information. 

input Physical Sensor 

or 

Logical Sensor 

Processing 

(Software or 

Hardware) 

output 

Logical Sensor 

Figure 7. Definition of Logical Sensor 

Some attempts to simplify the description of sensor information processing 
by combining the processing on the intellectual sensor and the software, and 
to realize a smooth conversion toward the intellectual sensor are included 
in this language.  However, since it is experimental language on a simple 
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processor, the following problems exist: 1) When shifted to parallel 
processing, the load distribution cannot be determined at down-loading; 
2) the synchronization time is uncertain. In the case of the passive sensor 
system mentioned above, the parallel processing descriptive language Occam 
attached to the transputer and the development system are provided. 
Regarding the first problem, it could be partially resolved through the use 
of Occam and the development system functions. With regard to the second, 
it can be resolved sufficiently with the high-speed task switch function of 
the transputer. 

7. Neuro Computing and Sensor Information Processing 

Very recently, parallel processing architecture based on a neuro circuit net 
model20 has been attracting attention. From the viewpoint of sensor 
information processing, the architecture which realizes neuro computing 
focuses on the I/O structure. The positioning of sensor information and its 
processing method under neuro computing will be investigated as follows: 

7.1 Existence of I/O Bottleneck 

When the computation structure of neuro computing is explored by 
conventional computers, emphasis is placed on realizing its parallel 
computation structure. This involves the resolution of the conventional von 
Neumann bottleneck. However, neuro computing is basically an "input -»■ 
operations -» output" device with an advanced parallel structure. In 
addition, because its ability for operations and memories is low, a large 
number of processing elements lacking flexibility are placed in a parallel 
manner, and parallel operations are carried out through a high density 
network, a network bottleneck must not exist. For this reason, realization 
through optical operations is also being attempted. 

»or proettting actuator 

(a)    Conventional computer 

tensor neural nrtwork actuator 

(b)    Neural network 

Figure 8. Neuro-Computing and Sensor Information Processing 

In order to realize this operational structure without the bottleneck, each 
element must independently have the "input -+ operation (specific purpose 
and less performance acceptable) -► output" function. This aspect is 
compared with that of a conventional computer in Figure 8. The achievement 
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of a high performance operational unit has been targeted in a conventional 
computer (parallel computer included). A demand for parallelism in an I/O 
unit has not appeared. Therefore, when attempting to design neuro computing 
without changing the conventional configuration, a bottleneck occurs in the 
I/O unit, even though the bottleneck does not appear in operation 
processing. 

7.2 Necessity for I/O Oriented Processing Mechanism 

Due to the above reasons, the structure of the processing mechanism 
realizing neuro computing is very similar to that of a parallel processing- 
type sensor's intellectualization. This means that even in the case of 
neuro computing, attention is paid to a network. In particular, the 
structure of the processing mechanism with the sensor and actuator, as shown 
in this paper, becomes necessary for its realization. 

8. Conclusion 

From the viewpoint of sensor intellectualization, operational processing 
architecture related to sensor information has been discussed. 

In this paper, aiming at incorporating a highly general-purpose processing 
mechanism with a sensor device for exclusive usage, several architectures, 
including their characteristics, have been described. The actual prototype 
models and processing results have been shown for some of them. 

The operation processing architecture related to sensor information 
processing has unique design conditions involving integration and the degree 
of exclusive use when compared to the conventional computer architecture 
design concept. In this paper, the composition of sensor-oriented operation 
architecture is basically proposed as the design concept for these 
conditions. This concept involves paying attention to the I/O portion or 
unit and then assigning priority to its functions, although the design 
concept and evaluation of the conventional computer architecture have 
concentrated on the operation portion or unit. On the other hand, it is 
pointed out that the architecture realizing neuro computing should have a 
structure which regards parallelism of the I/O as being important. 
Therefore, in designing operation architecture to realize neuro computing, 
the sensor's intellectualization and its design concept have been shown to 
be necessary. 

Along with the higher integration of a computer and/or a processor and the 
expansion of its field of application, not only the architecture of the 
computer itself, but also discussions of the architecture, including its 
applications, should be promoted in the future. The author feels strongly 
that discussions involving sensor architecture based on the computer 
architecture described in this paper must become more active. 
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